
Programming according to IEC 61131-3
Software Manual

WinSPS

104
Edition

Antriebs- und Steuerungstechnik

WinSPS

Programming according to IEC 61131-3
Software Manual
1070 072 305-104 (03.03) GB

E 2001 – 2003

by Bosch Rexroth AG, Erbach / Germany
All rights reserved, including applications for protective rights.

Reproduction or distribution by any means subject to our prior written permission.

Discretionary charge 18.–

Contents V

1070 072 305-104 (03.03) GB

Contents

Page

1 Safety Instructions 1–1.
1.1 Intended use 1–1.
1.2 Qualified personnel 1–2.
1.3 Safety markings on components 1–3.
1.4 Safety instructions in this manual 1–4.
1.5 Safety instructions for the described product 1–5.
1.6 Documentation, software release and trademarks 1–6.

2 Quick start and input examples 2–1.
2.1 Project Default settings 2–1.
2.2 Programming variations 2–2.
2.3 Edit IEC file 2–3.
2.4 Check symbol file 2–6.
2.5 Load program in the controller 2–7.
2.6 Observe and test the program on the monitor 2–8.

3 Introduction 3–1.
3.1 What is IEC 61131-3? 3–1.
3.2 Programming languages of the IEC 61131-3 3–1.
3.2.1 The programming language IL 3–2.
3.2.2 The programming language ST 3–3.
3.3 Why use programming languages as per IEC 61131-3 ? 3–3.
3.4 Difference from “classical” programming languages 3–3.
3.5 Model of the programming as per IEC 61131-3 3–5.
3.6 Compatibility and fulfillment of standard 3–8.
3.7 Programming system and controller 3–8.

4 Project preparations 4–1.
4.1 Installation 4–1.
4.2 Default settings 4–1.
4.2.1 Licensing the programming languages 4–1.
4.2.2 Project default settings 4–2.

5 Writing programs in the WinSPS Editor 5–1.
5.1 Declaration tables 5–3.
5.1.1 POU type 5–3.
5.1.2 Variable declaration 5–4.
5.1.3 Type definition 5–8.
5.2 Instructions part 5–11.
5.3 Error messages 5–12.
5.4 Global variable declaration – variable editor 5–13.
5.5 Global type definition – type editor 5–14.
5.5.1 TYPE: Data Type 5–14.
5.5.2 STRUCT: Data structure 5–15.
5.5.3 ENUM: Enumeration 5–16.
5.6 Constant definition – DEFINE Editor 5–18.

ContentsVI

1070 072 305-104 (03.03) GB

6 Program Structure 6–1.
6.1 Program Organization Units– modules of the IEC 6–1.
6.2 POU types 6–3.
6.2.1 Main program – PROGRAM 6–4.
6.2.2 Function block – FUNCTION_BLOCK 6–5.
6.2.3 Function – FUNCTION 6–7.
6.3 Declaration part 6–8.
6.3.1 Variable types 6–9.
6.3.2 Applicability and access options of the variable types 6–11.
6.4 Instructions part 6–12.
6.5 Calls between POUs 6–12.
6.5.1 Call hierarchy 6–12.
6.5.2 Recursive calls 6–13.
6.5.3 Call interface – parameters during the call 6–14.
6.5.4 Calling up the function blocks 6–17.
6.5.5 Calling up the functions 6–19.
6.6 Instance building of function blocks 6–21.
6.6.1 Validity of function blocks 6–22.
6.6.2 Module with “memory” 6–22.
6.6.3 Instance building for combination with “classical” programming languages

6–22

7 Data model 7–1.
7.1 Language elements 7–1.
7.1.1 Key words 7–2.
7.1.2 Identifiers 7–3.
7.1.3 Literals 7–4.
7.1.4 Delimiter 7–7.
7.1.5 Comments 7–8.
7.2 Data types 7–9.
7.2.1 Elementary data types 7–9.
7.2.2 Derived data types (Type definition) 7–11.
7.2.3 Generic data types 7–13.
7.3 Variables 7–15.
7.3.1 Declaration of variables 7–15.
7.3.2 Initialization of variables and remanence 7–16.
7.3.3 Access to variables 7–18.
7.3.4 Physical addresses 7–19.
7.3.5 String variables 7–21.
7.3.6 ARRAY 7–22.
7.3.7 Data structures (STRUCT) 7–28.
7.3.8 Variable attributes 7–30.

Contents VII

1070 072 305-104 (03.03) GB

8 Programming language Instruction List (IL) 8–1.
8.1 Instructions 8–1.
8.2 Working register and status bits 8–2.
8.3 Current Result (CR) – the universal accumulator 8–2.
8.4 Program rules 8–4.
8.4.1 IL sequences 8–4.
8.4.2 Label 8–5.
8.4.3 Nesting levels, Parenthesis 8–5.
8.5 Instruction set 8–7.
8.5.1 Load instructions – LD 8–9.
8.5.2 Assignments – ST, S, R 8–10.
8.5.3 Boolean operators AND, &, OR, XOR 8–12.
8.5.4 Arithmetic operators ADD, SUB, MUL, DIV 8–15.
8.5.5 Comparison operators– GT, GE, EQ, LE, LT, NE 8–18.
8.5.6 Jump operators – JMP, JMPC, JMPCN 8–19.
8.5.7 Call of function blocks – CAL, CALC, CALCN 8–20.
8.5.8 Call of functions 8–22.
8.5.9 Return jump – RET, RETC, RETCN 8–23.

9 Programming language Structured Text (ST) 9–1. . . .
9.1 Expressions, operands and operators 9–1.
9.2 Instructions 9–3.
9.2.1 Assignment 9–4.
9.2.2 Call of an function block 9–4.
9.2.3 Return jump – RETURN 9–5.
9.2.4 Conditional execution 9–5.
9.2.5 Selection, – IF 9–6.
9.2.6 Multi-selection– CASE 9–7.
9.2.7 FOR loop 9–8.
9.2.8 WHILE loop 9–10.
9.2.9 REPEAT loop 9–10.
9.2.10 Deflecting and non-deflecting loops 9–11.
9.2.11 Premature loop end – EXIT 9–12.

10 Check load and test program 10–1.
10.1 Check / compile module 10–1.
10.2 Link all modules – Create new project 10–2.
10.3 Project specifications in the symbol file 10–4.
10.4 Load program and modules 10–5.
10.5 Monitor 10–6.

11 Use of IEC modules in the classical programming lan-
guages 11–1.

11.1 Pure IEC programs 11–1.
11.2 Mixed programs 11–2.
11.3 Function block call 11–4.
11.3.1 Call parameter list – wizard for FB call 11–5.
11.3.2 Changing the FB calls 11–8.
11.3.3 Deleting the FB calls 11–9.
11.3.4 Call in the Sequential Function Chart 11–10.
11.4 Symbol file – interface of mixed programming 11–11.
11.4.1 Physical addresses and miscellaneous data 11–11.
11.4.2 Symbolic operands via the call interface 11–13.
11.4.3 Symbolic operands as global variables 11–14.
11.4.4 Global type definitions 11–14.
11.5 Differences in case of mixed programming 11–17.

ContentsVIII

1070 072 305-104 (03.03) GB

12 Standardized functionality 12–1.
12.1 Standard functions 12–1.
12.1.1 Generic data types and “overloaded” functions 12–1.
12.1.2 Extensibility of functions 12–3.
12.1.3 Type conversion 12–3.
12.1.4 Numeric functions 12–5.
12.1.5 Arithmetic functions 12–5.
12.1.6 Shift functions 12–7.
12.1.7 Boolean functions – logical links 12–8.
12.1.8 Selection 12–8.
12.1.9 Comparison 12–9.
12.1.10 Functions for strings 12–10.
12.2 Standard function block 12–12.
12.2.1 Bistable elements – Flipflops 12–14.
12.2.2 Edge detection 12–15.
12.2.3 Counter 12–16.
12.2.4 Timer 12–18.

13 Standard fulfilment 13–1.
13.1 Common elements 13–1.
13.2 Language elements 13–14.
13.3 Causes of errors 13–16.

A Annex A–1.
A.1 Abbreviations A–1.
A.2 Index A–2.

Safety Instructions 1–1

1070 072 305-104 (03.03) GB

1 Safety Instructions

Before you start programming the software PLC PCL or the CL550 by using
programming languages according to IEC 61131-3, we recommend that you
thoroughly familiarize yourself with the contents of this manual. Keep this
manual in a place where it is always accessible to all users.

1.1 Intended use

This manual contains information required for the proper use of this product.
The products described hereunder have been developed, manufactured,
tested and documented in compliance with the safety standards. These
products pose no danger to persons or property if they are used in
accordance with the handling stipulations and safety notes prescribed for
their configuration, mounting, and proper operation.

Safety Instructions1–2

1070 072 305-104 (03.03) GB

1.2 Qualified personnel

This instruction manual is designed for specially trained personnel. The rele-
vant requirements are based on the job specifications as outlined by the
ZVEI and VDMA professional associations in Germany. Please refer to the
following German-Language publication:
Weiterbildung in der Automatisierungstechnik
Publishers: ZVEI and VDMA Maschinenbau Verlag
Postfach 71 08 64
60498 Frankfurt/Germany

This instruction manual is specifically designed for PLC technicians. Basic
skills in Programmable Logic Controllers are an advantage, however, they
are not mandatory.

Interventions in the hardware and software of our products not described in
this instruction manual may only be performed by our skilled personnel.

Unqualified interventions in the hardware or software or non-compliance
with the warnings listed in this instruction manual or indicated on the product
may result in serious personal injury or damage to property.

Installation and maintenance of the products described hereunder is the
exclusive domain of trained electricians as per IEV 826-09-01 (modified)
who are familiar with the contents of this manual.

Trained electricians are persons of whom the following is true:
D They are capable, due to their professional training, skills and expertise,

and based upon their knowledge of and familiarity with applicable techni-
cal standards, of assessing the work to be carried out, and of recognizing
possible dangers.

D They possess, subsequent to several years’ experience in a comparable
field of endeavour, a level of knowledge and skills that may be deemed
commensurate with that attainable in the course of a formal professional
education.

With regard to the foregoing, please read the information about our compre-
hensive training program. The professional staff at our training centre will be
pleased to provide detailed information. You may contact the centre by tele-
phone at (+49) 6062 78-258.

Safety Instructions 1–3

1070 072 305-104 (03.03) GB

1.3 Safety markings on components

DANGER! High voltage!

DANGER! Corrosive battery acid!

DANGER! Hazardous light emissions
(optical fibre cable emitters)!

Disconnect mains power before opening!

Lug for connecting PE conductor only!

Functional earthing or low-noise earth only!

Screened conductor only!

Safety Instructions1–4

1070 072 305-104 (03.03) GB

1.4 Safety instructions in this manual

DANGER
This symbol is used wherever insufficient or lacking observance of this
instruction can result in personal injury.

CAUTION
This symbol is used wherever insufficient or lacking observance of
instructions can result in damage to equipment or data files.

. This symbol is used to alert the user to an item of special interest.

Safety Instructions 1–5

1070 072 305-104 (03.03) GB

1.5 Safety instructions for the described product

DANGER
Fatal injury hazard through ineffective Emergency-STOP devices!
Emergency-STOP safety devices must remain effective and
accessible during all operating modes of the system. The release of
functional locks imposed by Emergency-STOP devices must never
be allowed to cause an uncontrolled system restart! Before restoring
power to the system, test the Emergency-STOP sequence!

DANGER
Danger to persons and equipment!
Test every new program before operating the system!

DANGER
Retrofits or modifications may interfere with the safety of the
products described hereunder!
The consequences may be severe personal injury or damage to
equipment or the environment. Therefore, any system retrofitting or
modification utilizing equipment components from other
manufacturers will require express approval by Bosch.

Safety Instructions1–6

1070 072 305-104 (03.03) GB

1.6 Documentation, software release and trademarks

Relevant documentation
The present manual provides the user with comprehensive information ab-
out programming the

D PCL (Software PLC)
D CL550

according to IEC 61131-3.

. All informations about PCL are also valid for the integrated controllers
iPCL and PCLrho4.0, even if they are not mentioned in this manual.

Overview of available manuals:

Manuals Language Order no.

PCL and CL550, Programming and Operation,
Software Manual

english 1070 072 189

iPCL, System Description an Programming Ma-
nual

english 1070 073 875

. In this manual the floppy disk drive always uses drive letter A:, and the
hard disk drive always uses drive letter C:.

Special keys or key combinations are shown enclosed in pointed brackets:
D Named keys: e.g., <Enter>, <PgUp>,
D Key combinations (pressed simultaneously): e.g., <Ctrl> + <PgUp>

Release

. The descriptive information contained in this manual applies to:

Software: WinSPS Version 3.1 and later
Firmware: PCL Version 2.3 and later

CL550 Version 1.4 and later
iPCL NC software version 7.3 and later
PCLrho4.0 Version VO04L and later

Trademarks
All trademarks referring to software that is installed on Bosch products when
shipped from the factory represent the property of their respective owners.

At the time of shipment from the factory, all installed software is protected by
copyright. Software may therefore be duplicated only with the prior permis-
sion of the respective manufacturer or copyright owner.

MS-DOSr and Windowst are registered trademarks of Microsoft Corpo-
ration.

Quick start and input examples 2–1

1070 072 305-104 (03.03) GB

2 Quick start and input examples

Various working steps should be explained

D Project default settings
D Edit IEC file
D Check symbol file
D Load program into the controller
D Observe and test the program on the monitor

using a simple example.

Additional detailed input examples can be found in the help of WinSPS Soft-
ware, section “Introduction to WinSPS”.

2.1 Project Default settings

In the project default settings of the WinSPS, files and access paths are spe-
cified. For the IEC programming, a separate license is required. The licen-
sing is likewise called up in the default settings window, also refer to section
4.

The following illustration shows which input fields are important for the edi-
ting of IEC programs:

D Controller: Only controller of the type PCL, iPCL, PCLrho4.0 or CL550
can be used.

D Symbol file: In the symbol file, various inputs of WinSPS are managed
automatically.

D IEC file (IL/ST): For the editing of IEC files, a filename must be entered in
this input field.
The programming language is identified through the file extension :
Instruction List (IL): “.IL”
Structured Text (ST): “.ST”
The file extension must be entered by the user.

Start the editor for entering the program by pressing the appropriate button.

Quick start and input examples2–2

1070 072 305-104 (03.03) GB

Project default settings

2.2 Programming variations

The WinSPS allows you to use two variations of the IEC programming. De-
tailed information and examples concerning this can be found in section 11:

1) Combination of IEC modules and “classical programming languages”
2) IEC program without classical parts

The first variation is particularly useful when you want to program specific
functions using IEC modules, however, other control functions are program-
med e.g. in the classical programming language Bosch-IL. In this case, the
IEC modules are called up from the IL, but not vice versa.

In case of the second variation on the other hand, only IEC instructions are
allowed. This is then meaningful when only the programming languages of
the IEC 61131-3 are to used in a control program.

The following program example shows two variations without classical
parts. The first variation is shown in section 11.

Quick start and input examples 2–3

1070 072 305-104 (03.03) GB

2.3 Edit IEC file

The entry in the WinSPS editor takes place in the program editor: Button
Prog. and button IEC.

The editor is divided in different areas:

Declaration tables Tool bar

Instructions part

Status bar

Error messages

Declaration tables
In the first tab of the declaration tables the POU name and the POU type
PROGRAM, FUNCTION_BLOCK or FUNCTION can be entered. Moreover,
in case of a FUNCTION, the data type of the function value (FUN Return
type) is set.

CAUTION
If you make modifications in an input field, you must confirm the in-
put before loading the file in the controller .
Changes are accepted only after the confirmation – e.g. using the
<Enter> or <Tab> key!

Quick start and input examples2–4

1070 072 305-104 (03.03) GB

The second tab allows the entry of variable declarations by the user. Every
variable is entered row by row.

The fields “variable type”, “data type” and “attribute” are selection fields. By
clicking on this fields, a list of selection options is offered, refer to the illustra-
tion below. In the other fields, the entries are made from the keyboard.

The variable declaration can be made even by purely text input. The switch-
over between the declaration tables and text input takes place from the but-
ton:

Example of the text input:
VAR
 OUTPUT AT %Q1.7 : BOOL;
 INPUT AT %I0.3 : BOOL;
END_VAR

The third tab allows the entry of local type definitions. Detailed information
and input examples concerning this are shown in section 5.1.3.

Quick start and input examples 2–5

1070 072 305-104 (03.03) GB

Instructions part
Instructions of the programming language IL or ST, can be entered directly in
the instructions part, refer to the examples:

Instructions in the programming language IL

Instruction in the programming language ST

Quick start and input examples2–6

1070 072 305-104 (03.03) GB

2.4 Check symbol file

On editing and completion of the IEC files,

1. every single IEC file (POU) is compiled i.e. translated into program code
2. all files of the control project are combined into an integrated program

(link, Create new project)
3. the integrated program is loaded in the controller.

The working steps can be called up individually or jointly from the menu func-
tion controller " load. Detailed information concerning this can be found
in section 10.

The symbol file should be checked and in necessary, changed so that the
second step „Create new project“ can be carried out. The symbol file is called
up using the button

.

Normally, WinSPS automatically manages the entries in the symbol file. An
entry must be changed manually if the need be. At the position for “OM1”, the
module for main program (PROGRAM POU) must be entered.

Example:
OM1,R SIMPLE ; Cyclic program processing

The example shows the entry of the module “SIMPLE” in the symbol file. In
the current control folder, the file “Simple.IL” or “Simple.ST” must exist,
which must be of the POU type “PROGRAM”.

Quick start and input examples 2–7

1070 072 305-104 (03.03) GB

2.5 Load program in the controller

The menu function controller " Load opens a dialog window. Activate the
option “load integrated program” and start the loading process.

DANGER
Do not load the sample program into an active system!

Before loading , WinSPS checks the project to be loaded. Only error free
compiled and linked modules are loaded. If necessary, before loading, the
compiler or linker function for these modules is automatically called up.

Error messages are outputted should errors be detected during compilation
or linking. Using the button “Go to”, one can jump to the error position within
the module.

Project generation during the loading process

Quick start and input examples2–8

1070 072 305-104 (03.03) GB

2.6 Observe and test the program on the monitor

On pressing the button “IEC”, the monitor for IEC modules is shown.

In the declaration tables, the current process values of a variable are shown
in the column “monitor data”.

In future versions of the WinSPS with the associated firmware versions for
PCL or CL550, in the instructions part, the current process values shall be
shown matching with the current instruction row.

Further information can be found in section 10.5.

Monitor detail with an example of the programming language ST

Introduction 3–1

1070 072 305-104 (03.03) GB

3 Introduction

3.1 What is IEC 61131-3?

At the beginning of the nineties, the International Electrotechnical Commis-
sion (IEC) established the standard IEC 1131. At the end of that decade, this
standard was renamed as IEC 61131. This standard standardizes – pre-
viously manufacturer-dependent – PLC programming. Part 3 (IEC 61131-3)
of this international standard contains specifications of the programming
languages. As German standard DIN IEC 61131-3, it moreover replaces the
standards DIN 19239, DIN 40719T6 and the VDI guidelines VDI 2880 page
4.

In order to understand the IEC 61131-3 in greater detail, we recommend the
following literature:
John, Tiegelkamp: IEC 61131-3: Programming Industrial Automation
Systems, Springer Verlag, Berlin,
and the information available in the Internet at PLCopen:
www.plcopen.org

3.2 Programming languages of the IEC 61131-3

The languages retained from the ”classical” PLC programming

D Instruction List (IL)
D Ladder Diagram (LD)
D Function Block Diagram (FBD), as used by Bosch earlier: Function plan

were also included in the standard like the programming languages desi-
gned according to the current requirements:

D Sequential Function Chart (SFC)
D Structured Text (ST)

To some extent, the different languages allow conversion into each other.
They can also be mixed virtually in any way so that within the framework of a
project e.g. an ST module can be called up from a programming step of the
SFC.

Introduction3–2

1070 072 305-104 (03.03) GB

Examples
LD A

Instruction List (IL) ANDN B
ST C

Ladder Diagram (LD)

Function Block Diagram (FBD)

Sequential Function Chart (SFC)

Structured Text (ST) C := A AND NOT B;

Programming languages of the WinSPS
The programming system WinSPS presently supports the programming lan-
guages IL and ST in conformance with the standard IEC 61131-3. The pro-
gramming languages LD, FBD and the presentation method SFC are based
on IEC 61131-3 in further sections.

Parallel to the IL as per IEC, programming can also be done in WinSPS in the
established , “classical” IL. The classical IL is invoked in the editor and moni-
tor using the button IL , the Instruction List as per IEC using the button IEC.

. In order to prevent mix-up with the established Bosch programming
languages, the following language application is made:
IEC-IL: Instruction List as per IEC 61131-3.
Bosch-IL: Classical Instruction List (based on DIN 19239).

3.2.1 The programming language IL

The Instruction List (IL) as per IEC 61131-3 is a machine-like programming
language. Machine-like means that the instructions can be directly conver-
ted into the binary machine code of the PLC.

In comparison to the programming language ST, multiple program rows are
required in IL in order to formulate an instruction.

The programming language IL is described in detail in section 8.

Introduction 3–3

1070 072 305-104 (03.03) GB

3.2.2 The programming language ST

The Structured Text (ST) is a text-like higher programming language. In
comparison to machine-like IL, ST is a programming language, in which ex-
tensive language constructs allow a very compact formulation of the pro-
gramming task.

An ST program consists of instructions. In an instruction, values are worked
out and assigned, modules are called up and exited, and command flow is
controlled.

ST offers the advantage that an open program structure can be realized. ST
has a lesser efficiency – for example, in comparison IL. The programs are
slower depending upon the complexity.

The programming language ST is described in detail in section 9.

3.3 Why use programming languages as per IEC 61131-3 ?

A great advantage of the programming languages as per IEC 61131-3 is evi-
dent when used for different PLC systems. Reusability and interchangeabi-
lity of programs simplifies the portability between various systems.

The user enjoys the advantage of a uniform language and program struc-
ture. As a result of this, there is an advantage in terms of savings in the trai-
ning of the application programmers.

Due to standardization and certification, program systems can be compared
and evaluated among themselves, refer to section 3.6. The programs can be
easily ported between various systems.

3.4 Difference from “classical” programming languages

D The IEC 61131-3 is an international standard. The syntax of the program-
ming language is basically in the English language.

D The IEC 61131-3 specifies type, structure and contents of modules. It
acts the same way with the data to be processed. The standardized data
organization makes data modules, data arrays and symbol file redun-
dant, refer to the illustration below. In this regard, also refer to the section
4.2.2.

D IL, LD and FBD are based on the above-mentioned structure and data
administration. With regard to these points, they are fundamentally diffe-
rent from the classical procedures.

D SFC is a presentation method based on the IEC 60848 (French GRAF-
CET standard).

D ST is a new language which was realized only with the introduction of IEC
61131-3.

Introduction3–4

1070 072 305-104 (03.03) GB

D If in a “classical” program, data is declared globally (in the symbol file),
while programming as per IEC 61131-3, there exists the option of defi-
ning the data locally also and there, it can be protected against uninten-
tional access.

D Input and output parameters also have access protection in case of mo-
dule calls.

D Checking of the data formats in case of variables and direct memory ad-
dresses of the PLC such as E/A/M. As a result of this, access of data in
incorrect format is ruled out.

D Variables – apart from physical addresses – do not have a fixed memory
area in the PLC. This is automatically assigned by WinSPS during pro-
gram set-up .

D The instance building in case of function blocks allows implementation of
modules “with memory”. This principle is known from classical counter
and timer functions. It can however also be used for user function blocks
in case of modules as per IEC.

OM

Instructions

FC (PB)

Instructions

DM

Data

Symbol file (data)

Modules and data of the “classical” programming

PROG

Instructions

FB

Instructions

Data

Data

Global data

FUN

Instructions

Data

Modules and data of the programming as per IEC 61131–3

Introduction 3–5

1070 072 305-104 (03.03) GB

3.5 Model of the programming as per IEC 61131-3

Basis of the IEC is a model which clearly distinguishes commonly usable ele-
ments from the individual programming languages, refer to the following illu-
stration. As a result of this, many features can be used the same way for
different programming languages.

The common elements are handled in detail in sections 6, 7 and 12, the pro-
gramming languages are handled in sections 8 and 9.

Introduction3–6

1070 072 305-104 (03.03) GB

IEC 61131-3 standard

Common elements

Data types & variables

Configuration Resource Task

Program Organization Units (POU)

Program
(PROG)

Function block
(FB)

Function
(FUN)

Programming languages

IL
LD

FBD
SFC

ST

Common and specific elements of the IEC 61131-3

Introduction 3–7

1070 072 305-104 (03.03) GB

Data types and variables
Format, contents and syntax of data types and variables are fixed by the IEC
and to a great extent, they are identical for all IEC programming languages.
The programming system WinSPS monitors the usage of variables accor-
ding to their type, as a result of which program errors are virtually ruled out.

The access to hardware addresses such as inputs, outputs and labels is
possible. However, hardware addresses (physical addresses) must as va-
riables be assigned to a data type in advance. With this, even here, the
usage of variables according to their type is monitored. Moreover, the decla-
ration of hardware addresses is allowed only in a single module . This increa-
ses the portability to systems with other hardware features.

Every variable has a standard or user defined initial value. Variables can be
assigned the attribute “RETAIN” in order to allow a remanent behavior.

Arrays and data structures allow the implementation of very complex data
models.

Configuration, Resource, Task
The IEC plans these elements for runtime characteristics, the assignment of
the PLC hardware and for communication links between controls.

These elements are presently not supported .

Program Organization Units
Program Organization Units (POU) are the modules in the IEC 61131-3.
Features and interfaces of the modules are clearly defined. Every module
has its own data range. As a result, even modules “with memory” can be im-
plemented. These modules can be called up repeatedly within a program cy-
cle, without mutually affecting each other.

An efficient parameterization of the module interface allows protection of va-
riables against unauthorized access, passing or return of defined variables
in a module, passing of pointers to variables and access to global variables.

Typical PLC functionalities such as time, counters or arithmetic functions are
standardized by the IEC as standard functions and function modules. These
have clearly defined interfaces and provide established results. They can be
called up from all programming languages.

Programming languages
Depending on the application area, a selection can be made among the five
programming languages. All above-mentioned features of the “common ele-
ments” allow their use in any of the five programming languages.

WinSPS presently supports two programming languages: IL and ST.

Introduction3–8

1070 072 305-104 (03.03) GB

3.6 Compatibility and fulfillment of standard

The IEC 61131 is not a mandatory rule book but a guideline, which can be
followed by the manufacturers to greater or lesser degree. The respective
manufacturer must disclose the degree of implementation . For this, the IEC
intends a certification, which provides the user exact information concerning
the compatibility and norm fulfillment.

. Pay attention to the norm fulfillment of the WinSPS in section 13.

The Bosch programming system WinSPS has the “Base Level Certificate”
for the programming language ST.

3.7 Programming system and controller

Bosch supports programming in compliance with IEC with the programming
system WinSPS. A lot of help is available for programming and commissio-
ning. The following programming languages conform to IEC 61131-3:

D Instruction List
D Structured Text

Other programming languages in WinSPS are strongly based on the IEC
61131-3.

The programming as per IEC is allowed with the controllers listed in section
1.6. Kindly pay attention to the instructions concerning the version number
even there. Due to the constant advancement of programming system and
controller, attention is to be paid to the appropriate firmware and software
versions.

The listed controllers are suitable due to their modern and open hardware
architecture, specially in view of the specifications of the IEC 61131-3. With
firmware updates, these controllers can be adapted to the future develop-
ments. For this, also pay attention to various instructions concerning present
function extensions.

Project preparations 4–1

1070 072 305-104 (03.03) GB

4 Project preparations

The programming tool WinSPS provides an easy-to-use editor for inputting
data and instructions in various IEC programming languages. The monitor
allows program tracking and data observation for commissioning and error
detection. Before calling up the editor or monitor, a few default settings must
be made.

4.1 Installation

The WinSPS software (order no. 1070 077 925) can be installed on the PC
from the CD “PLC Tools” or directly from the internet. The internet address is:
“www.BoschRexroth.de”. For the installation, kindly pay attention to the ac-
companying text files.

4.2 Default settings

The dialog window for default settings appears after the WinSPS software is
invoked. Here, all project and control related settings are made. These are
retained even after exiting the program.

The default settings are divided in various functions:

D License
D Directories
D Projects
D Settings
D File names and link to the control.

4.2.1 Licensing the programming languages

A separate license is required for programming as per IEC 61131-3. The li-
cense is called up in the default settings window. If no valid license for the
IEC programming languages exists, such projects cannot be created or pro-
cessed.

In the license dialog window, you have the choice between various types of
licenses.

D Soft-license: A license is installed on the hard disk of the programming
unit, without any requirement of additional hardware.

Project preparations4–2

1070 072 305-104 (03.03) GB

D Hardlock license: Instead of a software license, you can use a hardlock
for plugging into the parallel interface or as an internal ISA Bus card (In-
troCard). You can get the hardlock from the Bosch Software Service, see
cover page for address. A hardlock can simultaneously hold the licensce
for WinSPS, WinCAN, WinDP and WinPanel.

D 14 Days test license: There is an alternate option to install a test licence
(= free of cost, 14 days test licence). A test licence can be installed only
once on the computer.

With the help of the function License " Show, which is called up in the project
default settings, the current license status can be displayed, refer to the
image.

License status: License for IEC programming

Please also pay attention to the instructions concerning the license in the
WinSPS help and in the file “ReadPLC.doc” in the subdirectory “DOC” of the
WinSPS Installation directory.

4.2.2 Project default settings

In the project default settings, files and access paths are specified. The de-
fault settings relevant for the processing of IEC programs are shown herein-
after. The meanings of the rest of the input fields are explained in detail in the
WinSPS help.

Project preparations 4–3

1070 072 305-104 (03.03) GB

Example of a project default settings

Program file
This field can be left empty.

The data concerning the program files is required only when IEC modules
are to be called from “classical programming languages” (e.g. classical IL).
This option is discussed in detail in chapter 11.

In case of IEC programming projects, the WinSPS generates automatic pro-
gram modules. For these modules, file names are reserved that may not be
used for other purposes.

Reserved program files are the file names of the used IEC files with the ex-
tension “.IL “ and “.ST”. WinSPS generates new program files with the exten-
sion “.PXO”. Similarly, the symbol names of the program modules FC512 to
FC1023 are reserved. The numbering is control dependent and can be adju-
sted through the symbol file depending upon the application. More informa-
tion in this regard can be obtained in chapter 10.3.

Symbol file
The programming as per IEC 61131-3 does nor foresee any symbol file. In
order to however allow a mixing of “classical” programming languages with
programming languages as per IEC, the symbol file is not dispensed with
due to compatibility reasons. The processing of the symbol file is differentia-
ted depending upon the structure of the program:

D Combination of an IEC program with classical program parts:
All used symbols, as well as program and data modules of the classical
programming language must be entered manually in the symbol file. This
is discussed in detail in chapter 11.4.

Project preparations4–4

1070 072 305-104 (03.03) GB

D Purely IEC programming:
The symbol file is managed automatically from WinSPS. No entries
should be made by hand.

Data module file
The information concerning a data module is not required. The WinSPS au-
tomatically generates data modules. For these modules, file names are re-
served that may not be used for other purposes.

Reserved data module files are IM0.PXD, as well as IM512.PXD to
IM1023.PXD (ascending numbering). Similarly, the symbols of the associa-
ted data modules DM0, as well as DM512 to DM1023 are reserved. The
numbering is control dependent and can be adjusted through the symbol file
depending upon the application. More information in this regard can be ob-
tained in chapter 10.3.

. The automatic generation of data modules refers to WinSPS version
3.1 and lower. In future versions of the WinSPS, no data modules shall
be reserved and set up.

IEC file (IL/ST)
The editor for IEC programming languages can be activated only when a file
name is entered in field“IEC file (IL/ST)”. With the input of a file name in this
field, a module for the programming as per IEC 61131-3 is set up. With re-
gard to modules, the IEC speaks of “program organization units”, in short:
POU.

The used programming language instruction list (IL) or structured text (ST) is
determined by the file extension “*.IL” or “*.ST”. The file extension must be
entered by the user.

. The used programming language is determined by the file extension!

POU and file names may not appear more than once in a project. The POU
name can be entered in the editor.

Example:
File name: MODULE.IL POU Name: Module_1
File name: MODULE.ST POU Name: Module_2

Though the POU names of both the modules in this example are different,
yet the filenames within a project may not be identical; not even when they
are used for different programming languages as shown here.

Writing programs in the WinSPS Editor 5–1

1070 072 305-104 (03.03) GB

5 Writing programs in the WinSPS Editor

The WinSPS Editor supports program writing as per IEC using an easy-to-
use user interface which minimizes the input fields.

The input takes place in the program editor, which is activated using the but-
ton “Progr.”. On pressing the button “IEC”, the programming as per IEC
61131-3 is selected.

The used programming language instruction list (IEC-IL) or structured text
(ST) is determined by the file extension “*.IL” or “*.ST”. So long as in the
project default settings, no filename is entered in the field “IEC file”, the pro-
gramming as per IEC cannot be activated.

. All inputs are accepted in the current IEC file *.IL or *.ST. These files are
converted into other files later on with the compilation or generation of
the project by WinSPS. In this case, it involves reserved programs and
modules. Moreover, entries are accepted in the current symbol file. In
this regard, refer to the section 10.

Editor range
The editor for IEC files can be divided in three sections:

D Declaration tables
D Instructions part
D Error messages

Declaration tables Tool bar

Instructions part

Status bar

Error messages

In the declaration table, POU type and name, variables and local type defini-
tions are edited. In the instructions part, the program instructions are ent-
ered. When there are erroneous inputs, error messages are outputted in the
lower window area by the subsequent compiler or linker run.

Writing programs in the WinSPS Editor5–2

1070 072 305-104 (03.03) GB

Common elements
A feature of the IEC 61131-3 is the definition of common elements which can
be used in different programming languages in the same way. Within a POU
(module) the variable declarations and type definitions are common ele-
ments i.e. independent of the used programming language, the variable de-
claration and type definition are identical.

A POU as per IEC 61131-3 is divided in the declaration part for variables and
in the instructions part of the respective programming language. As a result,
the commonly usable elements can be clearly demarcated by the program-
ming language. In the WinSPS Editor, this demarcation is achieved through
the parts “declaration tables” and “instructions part”.

Variable declaration

Programming language

POU

Instructions part

Declaration tables

WinSPS Editor

Writing programs in the WinSPS Editor 5–3

1070 072 305-104 (03.03) GB

5.1 Declaration tables

With the help of the declaration tables, the input of variables and data types
is simplified. All inputs are converted into the syntax of the IEC so that the
errors can be minimised.

The inputs can however also be made without declaration tables in pure text
programming. The switchover between the declaration tables and text input
takes place from the button:

The declaration is divided in various input masks (tables) which are repre-
sented by three tabs:

D POU type (general data)
D Variable declaration
D Data type definitions (user-defined, local)

5.1.1 POU type

In the input mask, general data concerning the current module (POU = Pro-
gram Organisation Unit) is specified.

Example of a POU of the type PROGRAM with the name SIMPLE

CAUTION
If you make modifications in an input field, you must confirm the in-
put before loading the file in the controller.
Changes are accepted only after the confirmation – e.g. using the
<Enter> or <Tab> key!

POU name
Normally, the POU name initially corresponds to the current filename *.IL or.
*.ST. The name can be changed and may not be identical to the filename.
The length of the POU name may not be more than 32 characters. Specifica-
tions for the identifiers of the IEC are to be followed, refer to section 7.1.2.

Writing programs in the WinSPS Editor5–4

1070 072 305-104 (03.03) GB

POU type
The characteristic of the module is determined from the POU type. The three
POU types PROGRAM, FUNCTION_BLOCK and FUNCTION are specified
using the selection switch.

FUN ReturnType
In case of a POU of the type FUNCTION, the data type of the function value
can be selected in the field FUN ReturnType.

Comment
The large input field in the lower area allows the entry of any comment text.
This text is placed at the top of the file. No comment markings should be ent-
ered, these are automatically added by WinSPS.

Further information concerning the POU can be found in section 6.1.

5.1.2 Variable declaration

In this table, the variables of the current POU are edited. Every used variable
must be declared.

Every variable is represented by a row of the table. In order to enter a new
variable, select an empty row. In order to change an existing entry, position
on the row or the column to be changed. In order to delete a variable, after
positioning, press the button:

CAUTION
If you make modifications in an input field, you must confirm the in-
put before loading the file in the controller.
Changes are accepted only after the confirmation – e.g. using the
<Enter> or <Tab> key!

Variable type
A selection window opens on clicking a field in the variable type. The selec-
tion option changes depending upon the POU type. The following table
shows the possible variable types and the POU types, in which these are
available:

Writing programs in the WinSPS Editor 5–5

1070 072 305-104 (03.03) GB

Variable type Explanation PROG FB FUN

VAR Local variable within the POU Yes Yes Yes

VAR_INPUT Input variable Yes Yes Yes

VAR_OUTPUT Output variable Yes Yes –

VAR_IN_OUT Input and output variable Yes Yes –

VAR_EXTERNAL Global variable, which is
declared in another POU

Yes Yes –

VAR_GLOBAL Global variable, which is
declared in this POU.

Yes – –

VAR_ACCESS* Access paths Yes – –

* The variable type VAR_ACCESS is presently not supported.

Multiple declarations of a variable type are automatically put together by
WinSPS. Here, the variables are at times rearranged so that the variables of
the same type follow directly after one another.

Detailed information can be found in section 6.3.1.

Name
The name of the variables are entered in the second table field. This name
must correspond to the identifier specifications of the IEC, refer to section
7.1.2.

Data type
A selection window opens on clicking a field in the data type. Elementary
data types predefined by the IEC as well as global user-defined data types
can be selected. Global user-defined (derived) data types are defined in the
type editor, refer to section 5.5. If you use local user-defined data types, the
type names can be entered by hand. Local, user-defined data types can be
edited in the declaration table of the type definition.

The elementary data types are listed in section 7.2.1. Information concer-
ning the use of user-defined data types can be found in this section further
below, as well as in section 7.2.2.

Initial value
Here, the variable can be assigned an initial value. This value is to be ent-
ered as numeric, string or time literal depending upon the data type.

Example:
Data type TIME_OF_DAY involves a time variable. The initial value must
therefore be available in the following form, e.g. tod#14:30:00.0

Further information concerning literals can be found in section 7.1.3.

Address
In case of POU type PROGRAM, there is an option to assign to the variables
physical addresses such as inputs and outputs of the PLC.
Physical addresses can be declared only in the PROGRAM POU.

Writing programs in the WinSPS Editor5–6

1070 072 305-104 (03.03) GB

Example:
The PLC input 3.0 should be assigned to a variable name: The input field
“Address” contains %IX3.0. The data type must be BOOL.

Information concerning format and the use of physical addresses can be
found in section 7.3.4.

Attribute
The IEC defines attributes, using which other features can be assigned to
the variables. A selection window opens on clicking an attribute field in the
data type. The following table shows all attributes and their meaning:

Attribute Explanation

RETAIN Battery backed-up, remanent

CONSTANT Constant

R_EDGE Rising edge

F_EDGE Falling edge

READ_ONLY Wite-protected

READ_WRITE Reading and writing access

* The attributes related to the edge control are presently not supported. Edge
control can be realised using the standard function blocks R_TRIG and
F_TRIG, refer to section.

. All variables are basically handled as with RETAIN attribute. Excep-
tions are the standard FBs. These are basically not remanent i.e. they
are re-initialized after every STOP/RUN switchover.
The remnance characteristic can moreover be configured in the orga-
nisation module OM2. Follow the instructions in the software manual
“PCL and CL550 (order no. 1070 072 189) or in “iPC” (order no. 1070 073
875.

Allowed attributes of the individual variable types are listed in the following
table:

Variable type RETAIN CONSTANT R_EDGE
F_EDGE

READ_ONLY
READ_WRITE

VAR Yes Yes – –

VAR_INPUT – – Yes –

VAR_OUTPUT Yes – – –

VAR_IN_OUT – – – –

VAR_EXTER-
NAL

– – – –

VAR_GLOBAL Yes Yes – –

VAR_ACCESS* – – – Yes

* The variable type VAR_ACCESS is presently not supported.

Further information concerning attributes are listed in section 7.3.8.

Writing programs in the WinSPS Editor 5–7

1070 072 305-104 (03.03) GB

Monitor data
In this column, the current process data of the variables is shown in the moni-
tor of the WinSPS. This column cannot be edited.

Comment
Here, entry of any comment is possible. The comment is given at the end of
the line of the variable declaration. No comment markings should be ent-
ered, these are automatically added by WinSPS.

Example
The following example shows multiple variable declarations. Subsequently,
the conversion of the example into the textual presentation shows:

Example of different variable declarations (illustrative)

VAR
 Local AT %Q1.0 : BOOL; (* any comment *)
END_VAR

VAR_INPUT
 InOut : LREAL
END_VAR

VAR_INPUT
 In1 : INT := 15;
 In2 : DATE;
END_VAR

VAR_OUTPUT RETAIN
 Out : WORD
END_VAR

VAR_GLOBAL
 Global : WORD
END_VAR

VAR_EXTERNAL
 Global : WORD
END_VAR

Textual presentation of the above-mentioned example (illustrative)

Writing programs in the WinSPS Editor5–8

1070 072 305-104 (03.03) GB

5.1.3 Type definition

In this part, derived data types of the current POU can be defined. Derived
data types – also called type definition – are user defined data types which
are based on the “elementary data types”. With type definitions, new data
types with extended or altered attributes can be generated. In addition to
this, very complex data models can be realised.

The following can be defined:

D User-defined data types
D Data structures
D Enumerations

The type definitions are valid only for the current module (POU). Here, it also
involves local type definitions. Global type definitions are made in the symbol
editor with the help of the editor for global data types, refer to section 5.5.

CAUTION
If you make modifications in an input field, you must confirm the in-
put before loading the file in the controller.
Changes are accepted only after the confirmation – e.g. using the
<Enter> or <Tab> key!

Type name
The input field for the type names is used in three different ways. Detailed
examples are to be found in later part of this section.

4. Keyword TYPE (standard):
The keyword TYPE stands for the complete type definition of the current
POU and is as a result, at a level higher than all other definitions such as
data structures and enumerations. All table entries under this keyword
are accepted in the POU as user-defined type definitions .
In the pure textual presentation, these type definitions are placed bet-
ween the keywords TYPE and END_TYPE.

5. Enumeration, ENUM:
Enumerations are specified using the type names. Enter the name of the
enumeration in the edit field “Type name” . Delimited by comma, the enu-
meration elements are entered in the table in the field “Data type” bet-
weeen two brackets () . The table field “Name” must be empty.
In the pure textual presentation, these enumerations are placed between
the keywords TYPE and END_TYPE. Enumerations are a part of the
complete local type definition.

6. Data structures, (STRUCT):
Complex data structures are not created through the standard type
TYPE. Instead, any name, to be precise the structure name, is entered in
the edit field. In the table , the type definitions of all the sub-elements are
subsequently assigned to this structure .
In the pure textual presentation, these type definitions are placed bet-
ween the keywords TYPE and END_TYPE. The structure name is speci-
fied right before this structure block. The structure itself is found between
TYPE and END_TYPE. Structures are a part of the complete local type
definition.

Writing programs in the WinSPS Editor 5–9

1070 072 305-104 (03.03) GB

If within a local type definition, various types are to be put together, e.g. data
structures and enumerations, these must be entered one after the other
using the field “Type name”. A detailed example for this can be found at the
end of the type definition description.

In order to enter a new type definition, select an empty row in the table. In
order to change an existing entry, position the write cursor on the row or the
column to be changed. In order to delete a type definition, after positioning,
press the button:

Name
Derived (user-defined) data types get their name in this field . This name
must correspond to the identifier specifications of the IEC, refer to section
7.1.2. In case of enumeration types however, this field must remain empty.

The data type is assigned to the type at a higher-level. Thus, the data is assi-
gned e.g. to a data structure when a structure name is specified (refer to illu-
stration) in the field “Type name”.

Example of a data structure in the type definition

TYPE
 System_data:
 STRUCT
 Measured_value1 : BOOL := 1;
 Measured_value2 : INT := –15;
 Measured_value3 : UINT := 100;
 Measured_value4 : REAL := 10.2;
 END_STRUCT;
END_TYPE

Textual presentation of the example

Data type
A selection window opens on clicking a field in the data type. Elementary
data types predefined by the IEC as well as global user-defined data types
can be selected. Global user-defined (derived) data types are defined in the
type editor. If you use local user-defined data types, the type names can be
entered by hand.

This field is used with another meaning for the enumeration type. Instead of a
data type, the enumeration elements are entered between two brackets “()”.

Writing programs in the WinSPS Editor5–10

1070 072 305-104 (03.03) GB

The elementary data types are listed in section 7.2.1. Information concer-
ning the use of global user-defined data types can be found in section 5.5.

Initial value
Here, an initial value can be assigned. This value is to be entered as nume-
ric, string or time literal depending upon the data type. Information concer-
ning literals can be found in section 7.1.3.

Comment
Here, entry of any comment is possible. The comment is given at the end of
the line. No comment markings should be entered, these are automatically
added by WinSPS.

Example:

The following example shows the approach in case of complex type defini-
tions which put together various types within a local type definition. The il-
lustrations show working steps to be performed one after the other.
Afterwards, the result is indicated with the help of the textual presentation:

1. Step: User–defined data types

2. Step: Definition of an enumeration

Writing programs in the WinSPS Editor 5–11

1070 072 305-104 (03.03) GB

3. Step: Definition of a data structure

TYPE
 eSex : (M, F);
 usiAge : USINT;
 aChildAge : ARRAY [1..20] OF usiAge;
Person :
 STRUCT
 szName : STRING (20);
 Sex : eSex := F;
 Age : INT;
 END_STRUCT;
END_TYPE

Result: Textual presentation of the inputs made above

5.2 Instructions part

In the instructions part, the program instructions are entered. The program-
ming language is identified on the basis of the file extension “*.IL” or “*.ST” in
the project default settings.

The input format is different in different programming languages. The follo-
wing applies for the textual languages IL and ST: The instructions are ent-
ered by the row. Format and examples concerning this are shown in the parts
of the respective programming languages.

The different POU types are marked by keywords at the top as well as the
end of the file:

POU type Top Of File End Of File

PROGRAM PROGRAM Name END_PROGRAM

FUNCTION_BLOCK FUNCTION_BLOCK Name END_FUNCTION_BLOCK

FUNCTION FUNCTION Name : Type END_FUNCTION

So long as the declaration tables are activated, the keywords at the top of the
file and at the end of the file are not shown. The WinSPS completes these
automatically.

Writing programs in the WinSPS Editor5–12

1070 072 305-104 (03.03) GB

If these declaration tables are deactivated, e.g. using the button:

the instructions part then corresponds to the area between the last variable
declaration – ending with the keyword END_VAR – and the POU end – be-
fore the keyword END_x (where x corresponds to the POU type, refer to the
table above). All program instructions must be entered within this part.

5.3 Error messages

In the IEC editor, the lower window area is used for displaying errors after
checking. The checking is activated from the menu functions File " Create
new project and File " Compile module – even using the button:

and also during the program loading, refer to section 10.

In this case, the error message display is erased. On completion of the chek-
king, the error-free run or all errors are indicated. Unless specified other-
wise, the display is based on the current file.

Example of an error-free checking

Checking/compiling
The following text appears in case of error-free checking:

POU name – 0 error(s), 0 warning(s)

Error messages of the compiler (refer to section 10.1) have the following
structure:

(R,C) Error in the ...part : Error (ID)

R indicates the row number – C the column number, in which the error has
occurred. Subsequently follows the instruction whether the error lies in the
variable part(declaration part) or in the program part (instructions part). After
the colon, a description of the error or the warning is displayed in the plain
text. At the end of the row, an internal identification number ID is outputted in
brackets. In this case, differentiation is made between warnings with the
identification W and errors with the identification F.

Writing programs in the WinSPS Editor 5–13

1070 072 305-104 (03.03) GB

Example:

(5,3) Error in the variable part : Syntax error!
(E4006)

The first bracket shows that the error lies in row 3 and column 5 of the current
module. The error was made in the declaration part of the module. It involves
a syntax error, which means that the program text does not comply with the
formation rules of the programming language. In the bracket at the end, the
internal error identification for syntax error 4006 is indicated.

With a double-click on the error message, the write cursor is set in the row
containing the error. Thus, errors can be processed directly.

Kindly keep in mind that errors could give rise to consequent errors. So un-
der certain circumstances, the test result shows multiple errors in a program
row although there may be only one error. This is a typical characteristic of
compilers.

Linker – Create new project
Even the linker (refer to section 10.2) uses the window for the error output.
With the linker however, no clear error localization within a module can be
carried out and indicated. However, the filename of the POU , in which the
error is assumed, is indicated.

The example in the illustration shows a linker error due to an incompatible
data type in the module “HANS”.

Error message of the linker (Create new project)

5.4 Global variable declaration – variable editor

Under preparation.

Writing programs in the WinSPS Editor5–14

1070 072 305-104 (03.03) GB

5.5 Global type definition – type editor

In the editor for global type definition, derived data types can be defined glo-
bally. Derived data types – also called type definition – are user defined data
types which are based on the “elementary data types”. With type definitions,
new data types with extended or altered attributes can be generated. In addi-
tion to this, very complex data models can be realised. Global means that the
data types can be used in every POU.

. All global type definitions are written and in the internal file
“Bosch.Typ” and are managed there by WinSPS. If already generated
global type definitions can be drawn for other PLC projects, this file
can be copied to the corresponding project folder.

The type editor can be called up within the symbol editor using the following
button:

The following can be defined:

D User-defined data types
D Data structures
D Enumerations

5.5.1 TYPE: Data Type

Here, a user-defined (derived) data type can be defined. Detailed informa-
tion concerning these data types can be found in section 7.2.2. By pressing
the button “Type”, a new data type can be set-up within the tree structure.
The new data type initially gets the type name “New type”, which can be re-
named by clicking on the name. The name must correspond to the identifier
specifications of the IEC, refer to section 7.1.2.

On the right side, a row is available for inputting the data type, an initial value
and comments.

Elementary as well as user-defined data types can be selected. An initial
value can be optionally assigned in the column. This value is to be entered as
numeric, string or time literal depending upon the data type. Information con-
cerning literals can be found in section 7.1.3.

Writing programs in the WinSPS Editor 5–15

1070 072 305-104 (03.03) GB

Example of a global type definition

TYPE
 GlobalType : INT := 125;
END_TYPE

Textual presentation of the example

5.5.2 STRUCT: Data structure

By pressing the button “Struct”, a new data structure can be set-up within the
tree structure. Detailed information concerning data structures can be found
in section 7.3.7. The structure initially gets the name “New type”, which can
be renamed by clicking on the name. The name must correspond to the iden-
tifier specifications of the IEC, refer to section 7.1.2.

On the right side, the structure elements can be entered in the table by the
row. In case the rows are not sufficient, other rows can be inserted using the
corresponding button.

Every structure element (sub-element) is entered in the column “Name”. For
the data type of this element, elementary as well as user-defined data types
can be selected. An initial value can be optionally assigned in the column.
This value is to be entered as numeric, string or time literal depending upon
the data type. Information concerning literals can be found in section 7.1.3.

Writing programs in the WinSPS Editor5–16

1070 072 305-104 (03.03) GB

Example of a global data structure

TYPE
 Structure :
 STRUCT
 element1 : GlobalType;
 element2 : TIME := t#0:00:00;
 END_STRUCT;
END_TYPE

Textual presentation of the example

5.5.3 ENUM: Enumeration

By pressing the button “Enum”, a new enumeration can be set-up within the
tree structure. Detailed information concerning enumerations can be found
in section 7.2.2. The enumeration initially gets the name“New type”, which
can be renamed by clicking on the name. The name must correspond to the
identifier specifications of the IEC, refer to section 7.1.2.

The enumeration elements are assigned in the table. In case the rows are
not sufficient, other rows can be inserted using the corresponding button.

Every enumeration element is entered in the column “Name”. The remaining
columns have no significance.

Writing programs in the WinSPS Editor 5–17

1070 072 305-104 (03.03) GB

Example of a global enumeration

TYPE
 Enumerate: (red, blue, pink);
END_TYPE

Textual presentation of the example

TYPE
 GlobalType : INT := 125;
 Enumerate: (red, blue, pink);
 Structure :
 STRUCT
 element1 : GlobalType;
 element2 : TIME := t#0:00:00;
 END_STRUCT;
END_TYPE

Summary of all the examples shown in this section

Writing programs in the WinSPS Editor5–18

1070 072 305-104 (03.03) GB

5.6 Constant definition – DEFINE Editor

Constants can be generated locally and globally with the help of the variable
attribute “CONST”, also refer to section 7.3.8. In addition to this, global con-
stants can be set-up with the “DEFINE editor”. This is called up within the
symbol editor by pressing the button:

Every row in the define editor corresponds to a constant. The name must
correspond to the identifier specifications of the IEC, refer to section 7.1.2.
The value of the constant is assigned in the column initial value. Numeric or
time literals can be entered. Information concerning literals can be found in
section 7.1.3. The information concerning a data type is not required.

. During the subsequent use of the constants in the program, attention
must be paid to the data type compatibility.

Model entries for constants in the define editor

Program Structure 6–1

1070 072 305-104 (03.03) GB

6 Program Structure

A great advantage of the IEC 61131-3 is the specification of common ele-
ments, which can be used globally for all the programming languages. The
program structure , which is standardized with the design, contents and in-
terfaces of various module types. The IEC terms the modules “Program Or-
ganization Units”, in short: POU.

6.1 Program Organization Units– modules of the IEC

In the IEC 61131-3, modules are termed as Program Organization Units
(POU) . It involves closed program units, which receive values from outside,
process these values in the instructions part and supply results outwards.

A POU is divided in the declaration part for variables and in the instructions
part of the respective programming language. In the editor of the WinSPS,
this corresponds to the input areas “Declaration tables” and “Instructions
part”, refer to the illustration. Further information concerning the use of a
POU in the WinSPS Editor can be found in section 5.

Variable declaration

Programming language

POU

Instructions part

Declaration tables

WinSPS Editor

In the pure textual illustration without declaration tables, all elements of a
POU are visible. The following elements form the structure of a POU:

D Data concerning the POU type and the POU name (in case of functions,
additionally the data type of the function value)

D Declaration part
D Instructions part
D POU end

Program Structure6–2

1070 072 305-104 (03.03) GB

Example
The following example shows the structure of a POU. The programming lan-
guage is basically not relevant for the structure of the POU, however, it is re-
levant for the input form of the program statements. In this example, the
programming language ST was used:

PROGRAM SIMPLE

VAR
 OUTPUT AT %Q8.7 : BOOL;
 INPUT AT %I8.3 : BOOL;
END_VAR

 OUTPUT := NOT INPUT;

END_PROGRAM

Type and name of the POU

Declaration part

Instructions part

POU end

Structure of a POU

The declaration part begins after the specification of POU type and POU
name and ends with the last declaration block.

The instructions part begins after the last declaration block – ending with
the keyword END_VAR. The instructions part ends before the keyword
END_x, where x corresponds to the POU type.

Program Structure 6–3

1070 072 305-104 (03.03) GB

6.2 POU types

For the structuring of a PLC program, three POU types (module types) are
available:

PROGRAM

FUNCTION_BLOCK

FUNCTION

Main program

Function block

Function

Program structuring
The structuring of the application program is achieved by dividing the task to
be processed into sub-tasks. Each of these sub-tasks is placed in a POU.
The POUs can be called from each other so that the calling POU is interrup-
ted and the program processing continues in the called POU. After proces-
sing this POU, the program control returns to the calling POU and the
processing is continued. Further information in this regard can be found in
section 6.5.

Identification of a POU
The different POU types are marked by keywords at the beginning and end
of the file. At the top of the file, the name of the POU is specified after the
keyword. In case of a function, the data type of the function value is specified
additionally:

POU type Top Of File End Of File

PROGRAM PROGRAM Name END_PROGRAM

FUNCTION_BLOCK FUNCTION_BLOCK Name END_FUNCTION_BLOCK

FUNCTION FUNCTION Name : Type END_FUNCTION

In the WinSPS Editor, these keywords are not visible so long as the “declara-
tion tables” are activated, refer to section 5.1.

. The short names PROG, FB and FUN mentioned below were selected
only for this document and may not be used in place of the keywords
while programming.

Program Structure6–4

1070 072 305-104 (03.03) GB

6.2.1 Main program – PROGRAM

Key word: PROGRAM, short name: PROG

This module has exactly one occurrence for each central processing unit.
Exception: Multitasking (not currently supported by Bosch). The main pro-
gram runs through the cyclic processing in the PLC.

PLC peripherals and
communication

In the main program, the assignment of the PLC peripherals is made. Global
variables and access paths can be declared here. In the other POU types,
the same is not possible.

The use of the variable type VAR_ACCESS for the global PLC communica-
tion is presently not possible.

Interface
The program may call up function blocks and functions.

Mixed programming
In case of mixed programming with classical programming languages, there
may not be any PROGRAM POU. The main program is instead realized with
the help of the organization module OM1, refer to section 11.2.

Entry in the symbol file
The symbol file is automatically managed by WinSPS during the generation
of IEC programs. In case of mixed programming mentioned above, a few en-
tries must however be made in the symbol file by hand, refer to section 11.4.

Example of a PROGRAM POU (programming language ST):
PROGRAM CTU_PROG (* POU type and name *)

VAR (* Declaration part *)
 Counter : CTU_FB;
 AT %Q4.0 : BOOL;
 AT %Q4.1 : BOOL;
 Set1 AT %I4.0 : BOOL;
 Set2 AT %I4.1 : BOOL;
 Res AT %I4.2 : BOOL;
END_VAR
 (* Instructions part *)

 Counter (Set_1:=Set1, Set_2:=Set2, Res:=Res);
 %Q4.0 := Counter.C1_Max;
 %Q4.1 := NOT Counter.C1_Max;

END_PROGRAM (* POU end *)

Program Structure 6–5

1070 072 305-104 (03.03) GB

Declaration and instructions of a PROGRAM POU in the WinSPS Editor, also refer to section 5.1.

6.2.2 Function block – FUNCTION_BLOCK

Key word: FUNCTION_BLOCK, short name: FB

Function blocks form an important structuring element for PLC programs
due to numerous useful characteristics.

Interface
A function block may call up other function blocks and functions. Recursive
calls are not allowed, refer to section 6.5.2.

A function block may not have any input parameter, or it may have one or
more input parameters. Likewise, a function block may not have any output
parameter, or it may have one or more output parameters. The access to this
data is discussed in section 6.5.3.

While calling up a function block, not all input parameters need to be speci-
fied. The missing input parameters retain their values from the previous call
or are initialized with initial values. The initial values are specified in the de-
claration part of the FB. If this data is missing, the standard values of the data
type are used, refer to section 7.2.1.

Validity
Function blocks are locally valid. They must be declared in the calling POU.
The declaration of FBs is also termed as instance building or instancing.

Instance building
From the function block, multiple instances can be built; these occupy inde-
pendent memory locations for inputs, output and intermediate results. The
function block itself is not called up, instead, always an instance of the func-
tion block is called up. The principle of the instance building is illustrated in
detail in section 6.6.

Program Structure6–6

1070 072 305-104 (03.03) GB

Module with memory
Function blocks have a “memory”, i.e. the local variables of the module retain
their (instance specific) value across various calls . This is an independent
characteristic when for example, counter functionalities are to be built. Thus,
through this instance building, multiple counters of the same type can be
built. Every counter has its own memory. They do not influence each other.

Standard function blocks
In addition to the syntax of the programming languages, the IEC 61131-3
also standardizes important PLC functionalities. These are predefined in the
norm as “Standard functions” or “Standard function blocks”. All manufactu-
rers of programming systems or module libraries must follow these direc-
tions at the time of implementation.

The standard function blocks are listed in section 12.2.

In addition to this, manufacturers can offer other function blocks. Even the
user can plan his own FBs, which can be used globally across the project
(FB library).

Example of a function block (programming language ST):
FUNCTION_BLOCK CTU_FB (* POU type and name *)

VAR_INPUT (* Declaration part *)
 Set_1 : BOOL;
 Set_2 : BOOL;
 Res : BOOL;
END_VAR

VAR_OUTPUT
 C1_Max : BOOL;
END_VAR

VAR
 Counter_1 : CTU;
 Counter_2 : CTU;
 CV1 : INT;
END_VAR
 (* Instructions part *)

 Counter_1 (CU:=Set_1, RESET:=Res, PV:=20);
 Counter_1 (CU:=Set_1, RESET:=Res, PV:=20);
 C1_Max := CTU_FUN (Counter_1.CV, Counter_2.CV);
 CV1 := Counter_1.CV;

END_FUNCTION_BLOCK (* POU end *)

Program Structure 6–7

1070 072 305-104 (03.03) GB

Declaration and instructions of a FB POU in the WinSPS Editor, also refer to section 5.1.

6.2.3 Function – FUNCTION

Keyword: FUNCTION, short name: FUN

Functions are used to deliver an unambiguous result through by processing
the input parameters. As a result, functions are used for recurring tasks such
as mathematical functions.

Interface
A function may call up other functions. Recursive calls are not allowed, refer
to section 6.5.2.

Functions may not have any input parameter, or they may have one or more
input parameters and may return exactly one function value. The access to
this data is discussed in section 6.5.3.

With every call to the function, all input parameters are to be specified.

Validity
Functions are globally valid. They are as a result, available for all POUs and
therefore, they must not be declared in the calling POU.

Module without memory
A function may use local variables for intermediate results, they however do
not retain their value across various calls. A function therefore has no ’me-
mory’, i.e. for the same inputs, it always supplies the same result.

Standard functions
In addition to the syntax of the programming languages, the IEC 61131-3
also standardizes important PLC functionalities. These are predefined in the
norm as “Standard functions” or “Standard function blocks”. All manufactu-
rers of programming systems or module libraries must follow these direc-
tions at the time of implementation.

Program Structure6–8

1070 072 305-104 (03.03) GB

The standard functions are listed in section 12.1 . In this regard, also pay at-
tention to the characteristics of “common data types” in section 7.2.3.

In addition to this, manufacturers can offer other functions. Users can plan
their own functions, which can be used globally across the project (Functions
library).

Example of a function (programming language ST):
FUNCTION CTU_FUN : BOOL (* POU type, name and
 function value *)

VAR_INPUT (* Declaration part *)
 CV_1 : INT := 0;
 CV_2 : INT := 0;
END_VAR
 (* Instructions part *)

 CTU_FUN := CV_1 > CV_2;

END_FUNCTION (* POU end *)

Declaration of a function POU in the WinSPS Editor, also refer to section 5.1.

6.3 Declaration part

In the declaration part of a POU, variables are assigned to a specific data
type (declared). Here, assignments related to physical addresses can be
made and other characteristics can be fixed, also refer to section 5.1.

Moreover, in the declaration part of a POU, local, user-defined data types are
fixed, refer to section 7.2.2.

The declaration part is located at the beginning of the POU. It is independent
of the programming language used.

Program Structure 6–9

1070 072 305-104 (03.03) GB

6.3.1 Variable types

Different types of variables characterize different application purposes of the
variables. A differentiation is made between local variables and variables
which are visible from outside (call interfaces, also refer to section 6.5.3).

Depending upon the variable type, variables are integrated into a block.
Block beginning is formed by the keyword “VAR...”. Every block ends with
“END_VAR”. The frequency of same variable types and their sequence can
be anything. The WinSPS integrates scattered variables of the same varia-
ble type automatically into one block during inputs into the “declaration ta-
bles”. The formation rules and names for variables can be found in section
7.3.

With the help of a few examples, the following list shows all possible types of
variables:

Local variable
The local variable is valid only inside the POU in which it was declared. In this
example, a physical address is assigned.

VAR
 Local AT %Q1.0 : BOOL;
END_VAR

Input variable
An input variable is declared when the variable is only to be read within a
POU or when it is to be used for the parameter transfer to a function or a func-
tion block . As a result, the variable may not be changed in this POU. In the
calling POU, the variable name is used as “formal parameter” , refer to sec-
tion 6.5.3.

In the example, there are two input variables. The formal parameters are
“In1” and “In2”. The variable “In1” moreover was assigned the “Initial value”
15, refer to section 6.5.3.
Also pay attention to the remark “Use of input and output parameters” in sec-
tion 6.5.3.

VAR_INPUT
 In1 : INT := 15;
 In2 : DATE;
END_VAR

Output variable
In contrast to the input variables, the output variables for a function block
may be changed in the POU. In the calling POU, it may only be read.

The example moreover shows the use of the variable attribute “RETAIN”,
refer to section 7.3.8.
Also pay attention to the remark “Use of input and output parameters” in sec-
tion 6.5.3.

VAR_OUTPUT RETAIN
 Out : WORD
END_VAR

Program Structure6–10

1070 072 305-104 (03.03) GB

Input and output variable
An IN_OUT variable is read by the FB, processed and outputted under the
same name. With it, the characteristics of the VAR_INPUT and the
VAR_OUTPUT variables can be combined.
Also pay attention to the remark “Use of input and output parameters” in sec-
tion 6.5.3.

VAR_IN_OUT
 InOut : LREAL
END_VAR

DANGER
VAR_IN_OUT cannot be assigned an initial value. The initialization
can take place with the specification of the corresponding formal pa-
rameters instead of in the FB calls.
In case initial values are specified within VAR_IN_OUT, WinSPS does
not generate any error message during compilation or linking. The
initial values are however not set in the controller!

Global variable
A variable is declared as ”global variable” if it is valid for a program and in all
function blocks which are called up from this program. A global variable de-
clared in the program is known inside the program as well as inside the FBs,
which can be called up from this program. In all the called up FBs, in which
this global variable is to be used, it must be declared as VAR_EXTERNAL
with the same identifier (name).

VAR_GLOBAL
 Global : WORD
END_VAR

External variable
If a global variable is to be used inside a function block, it must be declared as
”VAR_EXTERNAL” with the same identifier (name) and data type as under
VAR_GLOBAL.
In functions, global variables cannot be used.

VAR_EXTERNAL
 Global : WORD
END_VAR

Access paths
Access paths across the project.

. The variable type VAR_ACCESS is presently not supported by Bosch
controller!

VAR_ACCESS
 Path : CPU_1.Simple.Param_1 : WORD
END_VAR

Program Structure 6–11

1070 072 305-104 (03.03) GB

All above-mentioned examples are summarized in the declaration tables of the WinSPS Editor (illustrative), also refer to section 5.1.

6.3.2 Applicability and access options of the variable types

Depending upon the POU type, different types of variables are allowed:

Variable type Explanation PROG FB FUN

VAR Local variable within the POU Yes Yes Yes

VAR_INPUT Input variable Yes Yes Yes

VAR_OUTPUT Output variable Yes Yes –

VAR_IN_OUT Input and output variable Yes Yes –

VAR_EXTERNAL Global variable, which is
declared in another POU

Yes Yes –

VAR_GLOBAL Global variable, which is
declared in this POU.

Yes – –

VAR_ACCESS* Access paths Yes – –

* The variable type VAR_ACCESS is presently not supported

The following examples should illustrate the access options of variables. An
external access implies processing inside the calling POU. The internal ac-
cess characterizes the behavior inside the POU, in which the variable was
declared.

Variable type External access Internal access

VAR – writing / reading

VAR_INPUT writing reading

VAR_OUTPUT reading writing / reading

VAR_IN_OUT writing / reading writing / reading

VAR_EXTERNAL writing / reading writing / reading

VAR_GLOBAL writing / reading writing / reading

VAR_ACCESS* writing / reading writing / reading

Program Structure6–12

1070 072 305-104 (03.03) GB

* The variable type VAR_ACCESS is presently not supported!

It is evident from the table that only the variable type VAR does not offer any
option for the external access. All other types of variables are suitable for the
data exchange between POUs.

The variable types VAR_INPUT and VAR_OUTPUT provide a mechanism
that prevents undesired manipulation.

. While using input and output parameters, pay attention to the instruc-
tions under section 6.5.3.

6.4 Instructions part

The declaration part is followed by the instructions part (body) of a POU. In
the instructions part, the PLC instructions to be executed are entered in the
respective programming language.

The description of the programming in the instructions part follows in the
chapters on the programming languages:

D Instruction list (IL), chapter 8
D Structured Text (ST), chapter 9

6.5 Calls between POUs

An application program can be structured using the call option of POUs. The
syntax of the calls is different among the programming languages. Detailed
information in this regard can be obtained in the related sections of the re-
spective programming language.

6.5.1 Call hierarchy

The following rules apply for the mutual calls to the program organization
units (POU), also refer to the illustration below:

D PROGRAM may call up FUNCTION_BLOCK and FUNCTION.
D FUNCTION_BLOCK may call up FUNCTION or FUNCTION_BLOCK.
D FUNCTION may call up only FUNCTION.

Program Structure 6–13

1070 072 305-104 (03.03) GB

PROGRAM FUNCTION_BLOCK

FUNCTION FUNCTION

FUNCTION

FUNCTION_BLOCK

Calling up options of the individual POU types

6.5.2 Recursive calls

DANGER
Recursive calls (calling up self) are not allowed. Even indirect recur-
sive calls are not allowed! Recursive calls can be detected through
the checking by WinSPS only in a limited way.
Through recursive calls, the maximum PLC cycle time is exceeded
and the controller are stopped!

Example of a recursive call (ST):
FUNCTION recursive : INT

VAR_INPUT
 Par01, Par02 : INT;
END_VAR

 Recursive := Par01 + Recursive (Par01, Par02);

END_FUNCTION

The example shows the function “Recursive”. Inside this function, the same
function is again called up. This leads to an endless loop of function calls.
The program does not respond any more and cannot be interrupted. It leads
to controller stoppage since the program cycle time is exceeded.

Program Structure6–14

1070 072 305-104 (03.03) GB

Example of an indirect recursive call (ST):
FUNCTION Fun_1 : INT

VAR_INPUT
 Par01, Par02 : INT;
END_VAR

 Fun_1 := Par01 + Fun_2 (Par01, Par02);

END_FUNCTION

FUNCTION Fun_2 : INT

VAR_INPUT
 Par01, Par02 : INT;
END_VAR

 Fun_2 := Par01 + Fun_1 (Par01, Par02);

END_FUNCTION

The example shows two functions, which when considered individually – do
not contain any recursion. The functions however call each other. “Fun_1”
calls up “Fun_2” , “Fun_2” again calls up “Fun_1”. This results in a recursive
chain of calls – an indirect recursion.

6.5.3 Call interface – parameters during the call

Input parameter
Parameters can be transferred to functions and function blocks at the time of
calling up. These parameters can be used for internal processing inside the
calling function or the function block. There, they are termed as input varia-
bles . In the calling POU, they are termed as input parameters or actual para-
meters.

Output parameter
In case of function blocks, there is an option of transferring the return values
to the calling POU through output parameters. It is fixed in the declaration
part of the FB, which input and output variables should the function block
have.

In case of functions, only input variables can be declared. Functions supply
only one output parameter, the so-called function value or return value.

Formal parameter
At the time of calling up a function or a function block, the variable names of
the respective input parameter may/must be specified. This name is also re-
ferred to as formal parameter. Rules for the use of formal parameters are
discussed in section 6.5.4 and 6.5.5.

Program Structure 6–15

1070 072 305-104 (03.03) GB

Initial values
Initial values can be specified in the declaration part of the POU to be called
up. If this data is missing, the standard values of the data type are used, refer
to section 7.2.1. Further information concerning the initialisation can be
found in sections 6.5.4 and 6.5.5.

Variable types of the parameters
The following table shows, for which purpose can various variable types be
used. A detailed enumeration of all variable types can be found in section
6.3.1.

Variable type Comment

Call interface VAR_INPUT
VAR_IN_OUT

Input parameter

Return values VAR_OUTPUT
VAR_IN_OUT
Function value in case
of FUNCTION

Output parameter

Global interface VAR_GLOBAL
VAR_EXTERNAL
VAR_ACCESS

Global data
and access paths

Local data VAR Only internal POU:
no interchange possible

Use of input and
output parameters:

For the variable types of the call interface and the return values, there are
different access methods. Pay attention to the following characteristics:

VAR_INPUT
Transfer of not the input variable itself, instead, transfer of a copy (memory)
to the POU. This principle is termed as “call by value”. This results in the pro-
tection from undesired manipulation within the called POU.

VAR_OUTPUT
In the calling POU, the data can only be read as the output parameters are
generated only in the called POU (return by value). Output parameters are
protected from being changed in the calling POU.

VAR_IN_OUT
In case of this variable type, there is no access protection, as here only one
pointer is transferred to a memory location (call by reference).
This principle certainly does not provide any protection, but it can be ideally
used during the transfer of complex data structures. The program proces-
sing is very efficient as the variables do not have to be copied during runtime.

DANGER
VAR_IN_OUT can not be preset to an initial value. The initialization
can instead take place in the FB call with specification of the corres-
ponding formal parameter.
In case initial values are specified within the declaration of
VAR_IN_OUT, WinSPS does not generate any error message during
compilation or linking. The initial values are however not set in the
controller!

Program Structure6–16

1070 072 305-104 (03.03) GB

Example
The following example shows a function block and subsequently a call op-
tion in the programming language ST:

FUNCTION_BLOCK FB1
VAR_IN
 Par_1 : BOOL;
 Par_2 : BOOL;
END_VAR

VAR_OUT
 Out : INT := 0;
END_VAR

 IF Par_1 = Par_2 THEN
 Out := Out + 1;
 END_IF;

END_FUNCTION_BLOCK

The function block “FB1” has two input parameters with the names “Par_1”
and “Par_2” of the data type “BOOL”, and the output parameter “Out” of
data type “INT”.

PROGRAM ABC
VAR
 AT %Q2.0 : BOOL;
 X1 AT %I2.0 : BOOL;
 Counter : INT := 0;
 FB1_Inst : FB1;
END_VAR

 FB1_Inst (Par_1:=%Q2.0, Par_2:=X1 | Counter := Out);

END_PROGRAM

The program “ABC” shows a call option of the function block “FB1”. The local
variables “%Q2.0” und “X1” are used as input parameters, the output para-
meter is assigned to the variable “Counter”.
The assignment takes place in the instance call with the specification of the
formal parameters “Par_1”, “Par_2” and “Out”.
The data types of the local variables and the FB internal variables must
match at the transfer interface.

Program Structure 6–17

1070 072 305-104 (03.03) GB

6.5.4 Calling up the function blocks

Call
The call to a function block takes place not through the FB name itself, in-
stead through the instance name. This is determined by the “Instance buil-
ding”, refer to section 6.6.

Parameter transfer
The transfer of input data and the evaluation of output data differ depending
upon the programming language. In the programming language IL and ST,
input data is “given” with the call, in brackets and delimited by commas. The
actual parameters are assigned to the formal parameters using “:=”. Out-
put parameters can similarly be assigned to the formal parameters in the
call. Input and output parameters are then separated from each other with
the character ”|”, refer to the example below.

The second method for the parameter transfer is the initialization before the
call. In IL, the parameters are initialized through a combination of loading
(LD) and assignment operators (ST). In ST, the assignment operator is used,
refer to the examples below.

The different methods are illustrated in detail in the corresponding sections
of the respective programming language.

Sequence of parameters
Since for every assignment of the input parameters, the specification of the
formal parameters is required , the sequence of the parameters in case of FB
calls is not relevant.

. The names of the formal parameters for standard function blocks are
specified in section 12.2 and in the WinSPS help, section “Program-
ming in compliance with IEC 61131-3, Standard Function Blocks”.

Leaving out and initializing
the parameters

While calling up a function block, not necessary parameters may be left out.
The missing input parameters retain their values from the previous call or are
preset with initial values. The initialization takes place only at the time of first
call of an FB instance. Afterwards, always the values of the previous call are
used. This characteristic is termed as “Module with memory”.

. VAR_IN_OUT parameters may not be left out. During compilation,
WinSPS generates an error message in case VAR_IN_OUT parameters
are left out.

The initial values are specified in the declaration part of the FB. If this data is
missing, the standard values of the data type are used, refer to section 7.2.1.

Program Structure6–18

1070 072 305-104 (03.03) GB

DANGER
VAR_IN_OUT can not be preset to an initial value. The initialization
can instead take place in the FB call with specification of the corres-
ponding formal parameter.
In case initial values are specified within the declaration of
VAR_IN_OUT, WinSPS does not generate any error message during
compilation or linking. The initial values are however not set in the
controller!

Write input variables and
read output variables

The access to the input and output data takes place in case of a function
block with the FB instance name, followed by a dot “.” as delimiter for the
variable following it. If the output variables within the FBs are not assigned
values, they receive the default values of their data type, refer to section
7.2.1.

Examples
FB Call in the programming language IL, method 1:
CAL CTU_Instance (RESET:=%IX3.6, PV:=Limit, CU:=_1S2)

Method 2:
LD %IX3.6
ST CTU_Instance.RESET
LD Limit
ST CTU_Instance.PV
LD _1S2
ST CTU_Instance.CU
CAL CTU_Instance

Access to output data in IL:
LD CTU_Instance.CV
ST Result

FB Call method 1, with assigning of the output parameter:
CAL CTU_Instance (RESET:=X1, PV:=100, CU:=X5 |
 Result:=CV)

Program Structure 6–19

1070 072 305-104 (03.03) GB

FB Calls in the programming language ST, method 1:
CTU_Instance1 (RESET:=%IX3.6, CU:=_1S2, PV:=Limit);
CTU_Instance2 (CU:=_1S5, PV:=Limit, RESET:=%IX7.4);

Method 2:
CTU_Instance1.RESET := %IX3.6;
CTU_Instance1.CU := _1S2;
CTU_Instance1.PV := Limit;
CTU_Instance1 ();

Access to output data in ST:
Result := CTU_Instance.CV;

6.5.5 Calling up the functions

Call
A function is called directly using the function name. Functions are always
known and can be called up across the project without declaration or in-
stance building.

Parameter Transfer
In the programming language ST, the formal parameters can be specified
or left out during the call. The actual parameters are assigned to the formal
parameters using “:=” , refer to the example below.

In the programming language IL, the formal parameters are basically not
specified during the call. Here, the sequence of the input parameters must
definitely be followed.

As the methods of parameter transfer are quite different in different program-
ming languages, they are explained in detail in the related sections of the
respective programming languages.

. In case of standard functions in the context of the common data types,
the description of the input variables is dispensed with. While calling
such functions, no formal parameters can be specified. The standard
functions are listed in section 12.1 . Information concerning common
data types can be found in section 7.2.3.

Leaving out and initializing
the parameters

While calling a function, input parameters may be left out. The missing para-
meters are preset to the initial values. The initial values are specified in the
declaration part of the function. If this data is missing, the standard values of
the data type are used, refer to section 7.2.1.

Program Structure6–20

1070 072 305-104 (03.03) GB

Sequence of parameters
When formal parameters (variable names) are left out – in the programming
language IL and in case of standard function, they must in fact be left out –
the sequence of the parameter is to be followed. It results from the sequence
of the declaration in the module to be called up. Refer to the example below.

If formal parameters are used for all the input parameters (programming lan-
guage ST), the sequence of the parameters is not relevant.

If input parameters are left out, the initial values are used.

Write input variables and
read function value

The input parameters are transferred directly with the call. In case of pro-
gramming language IL, there is an option of transferring the initial input para-
meters from the Current Result (CR) of the earlier executed instruction
without further specifications. Further information concerning this procedure
can be found in sections 8.3 and 8.5.8.

Functions supply a function value (return value) as output parameter. This
can be assigned directly, or can be used for further processing. If the function
value within the function is not described with a value, it gets the default va-
lue of its data type, refer to section 7.2.1.

Examples
Function call and assignment of the function value in the programming
language IL:
SHL 2#10010110, 2
ST Shift_Left

Use of the AR for the first parameter in IL:
LD 2#10010110
SHL 2
ST Shift_Left

Function call in ST with formal parameters:
Shift_Left := SHL (N:=2, IN:=2#10010110);

Without formal parameter. The sequence must be followed:
Shift_Right := SHR (2#01101100, 4);

Function call “CONCAT” and further processing through second func-
tion call “LEN”:
iLength := LEN (CONCAT (’To’, ’gether’));

Program Structure 6–21

1070 072 305-104 (03.03) GB

6.6 Instance building of function blocks

Due to the principle of instance building (instancing), function blocks are
considerably different from the other POU types.

FBs may not be called up directly using their (type)names. Instead, an in-
stance of the FB is called up. The instance is built in the declaration part of
the calling POU or as a global instance in another POU (refer to section
6.6.1). The instance building can be compared to the assignment of a varia-
ble to a data type, also refer to section 7.3.1. The declaration of a variable is
the same as the instance building of a data type.

Example:
VAR
 Valve_1 : BOOL; (* Boolean variable=Instance of the data type BOOL *)
 Valve_2 : BOOL; (* Other instance of the data type BOOL *)
 Variable_name : Data_type; (* common form *)

 CTU_Instance1 : CTU; (* Instance of the function block CTU *)
 CTU_Instance2 : CTU; (* Other instance of the FB CTU *)
 FB_Instancename : FB_type; (* common form *)
END_VAR

The example illustrates the principle of instance building. The data type
BOOL can (obviously) be used multiple times by building the instances of the
data type through the declaration of variables – in this case, “Valve_1” und
“Valve_2”.
In the lower part of the example, similar procedure is followed. With the data
type BOOL, the function block “CTU” can be used multiple times. CTU is a
standard function block, refer to section 12.2, using which a counter function
can be built. With the declaration (building) of two instance of this module,
two counter functions “CTU_Instance1” and “CTU_Instance2”, which are in-
dependent of each other, can be realized.

In the instructions part, the function block is called up using the instance
name, also refer to section 6.5.4.

For instance building of an FB in the declaration tables of the WinSPS Editor, also refer to section 5.1.

Program Structure6–22

1070 072 305-104 (03.03) GB

6.6.1 Validity of function blocks

With the instance building, the validity of the function block is determined. If
the instance building takes place inside the variable type VAR, the instance
can be used only inside this POU. With the combination VAR_GLOBAL and
VAR_EXTERNAL, an FB instance can be used in all modules.

. In contrast to this, functions are always known and can be called up
across the project without declaration or instance building.

6.6.2 Module with “memory”

For each instance of a function block, an independent copy (memory) of the
data is created. With this mechanism, data can be stored over multiple calls
(memory). This is necessary in order to e.g. realize timers, counters or Flip
Flops.

The used variable type in the declaration part of the FB decides, which data
is copied in the memory of the FB:

D Local variables (VAR) and input / output variables (VAR_INPUT,
VAR_OUTPUT) are copied fully.

D Pointer to variables in VAR_IN_OUT are stored, however, not the values
themselves. When for example, a data structure is transferred via
VAR_IN_OUT to the FB, the data elements of the structure are not sto-
red.

D Global variables are basically not copied (VAR_EXTERNAL).

. Since for every instance, a data copy is assigned in the memory of the
PLC, care must be taken to keep this data area as small as possible.
With the use of VAR_IN_OUT for example, the pointer can be transfer-
red to a complex structure in order to save space.

6.6.3 Instance building for combination with “classical” programming languages

The instance building is also used to allow the combination of modules as
per IEC 61131-3 (POU) with modules of the “classical” programming langua-
ges such as Bosch-IL. For this, the WinSPS provides special mechanisms.
Detailed information concerning this can be found in chapter 11.

Data model 7–1

1070 072 305-104 (03.03) GB

7 Data model

Independent of the programming language used, the data model describes
all common language elements . As a result, it presents the common ele-
ments of the IEC 61131-3.

7.1 Language elements

In the IEC, no distinction is made between UPPERCASE and lowercase let-
ters. However, in order to make better distinction, the style shown in the ex-
ample given below must be followed.

As the IEC has an international application, country-specific umlauts such as
ä, é, ñ, etc. are not allowed. However in future, umlauts should also be allo-
wed in the supplements to the standard. Umlauts are fundamentally allowed
in comments, refer to section 7.1.5.

As language elements, the IEC uses so-called

D Key words
D Identifiers
D Literals and
D Delimiters.

A POU is made up of these language elements.

Language element Explanation Examples

Key word Terms specified by IEC
61131-3

VAR_IN_OUT,
CAL,
FUNCTION_BLOCK

Identifiers User defined terms for
names of variables,
POUs, etc.

Radius,
Counter_1,
_1S15,
CTU_FUN

Literal Representation of the
values of various data ty-
pes

3.1416,
8.7266E–3,
’Text’

Delimiter Different meaning (,),+,–,*,:=,;,#,$,comma,
space, carriage return
(CR)

Data model7–2

1070 072 305-104 (03.03) GB

Example using a function in the programming language ST:

FUNCTION Circumference : REAL
VAR_INPUT
 Radius : REAL;
END_VAR
 Circumference := Radius * 2 * 3.1416; (* comment *)
END_FUNCTION

The example shows
key words: printed in bold
Identifiers: normal
Literals: in italics
Delimiter: Colon, star, equal, semicolon, parenthesis and space.

7.1.1 Key words

Key words are specified and reserved by the IEC. They cannot be used for
other purposes e.g. for variables. If by mistake a key word is used for user–
defined names, the compiler gives out an error message. For better under-
standing, keywords should be written in uppercase.

The following list shows all reserved key words in alphabetical order:

ABS, ACOS, ACTION, ADD, AND, ANDN, ANY, ANY_BIT, ANY_DATE,
ANY_INT, ANY_NUM, ANY_REAL, ARRAY, ASIN, AT, ATAIN,

BOOL, BY, BYTE,

CAL, CALC, CALCN, CASE, CD, CDT, CLK, CONCAT, CONFIGURATION,
CONSTANT, COS, CTD, CTU, CTUD, CU, CV,

D, DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DS, DT, DWORD,

ELSE, ELSIF, END_ACTION, END_CASE, END_CONFIGURATION,
END_FOR, END_FUNCTION, END_FUNCTION_BLOCK, END_IF,
END_PROGRAM, END_REPEAT, END_RESOURCE, END_STEP,
END_STRUCT, END_TRANSITION, END_TYPE, END_VAR,
END_WHILE, EN, ENO, EQ, ET, EXIT, EXP, EXPT,

FALSE, F_EDGE, F_TRIG, FIND, FOR, FROM, FUNCTION, FUNC-
TION_BLOCK,

GE, GT,

IF, IN, INITIAL_STEP, INSERT, INT, INTERVAL,

JMP, JMPC, JMPCN,

L, LD , LDN, LE , LEFT, LEN, LIMIT, LINT, LN, LOAD*, LOG, LREAL, LT,
LWORD,

MAX, MID, MIN, MOD, MOVE, MUL , MUX,

N, NE, NEG, NOT,

OF, ON, OR, ORN,

Data model 7–3

1070 072 305-104 (03.03) GB

P, PRIORITY, PROGRAM, PT, PV,

Q, Q1, QU, QD,

R, RI, R_TRIG, READ_ONLY, READ_WRITE, REAL, RELEASE, REPEAT,
REPLACE, RESET*, RESOURCE, RET, RETAIN, RETC, RETCN, RE-
TURN, RIGHT, ROL, ROR, RS, RTC, R_EDGE,

S, S1, SD, SEL, SEMA, SET*, SHL, SHR, SIN, SINGLE, SINT, SL, SQRT,
SR, ST, STEP, STN, STRING, STRUCT, SUB,

TAN, TASK, THEN, TIME, TIME_OF_DAY, TO, TOD, TOF, TON, TP, TRAN-
SITION, TRUE, TYPE,

UDINT, UINT, ULINT, UNTIL, USINT,

VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,
VAR_INPUT, VAR_OUTPUT,

WHILE, WITH, WORD,

XOR, XORN.

. * The key words R, S and LD of the input parameters are used in the
programming language instruction list (IL) with another meaning. Due
to this conflict, there are difficulties during translation by a compiler.
This problem was taken up in the working group for further develop-
ment of the IEC 61131-3. In a revised version of the standard, the para-
meter names should be changed to SET, RESET and LOAD. WinSPS
already uses this modified form.

7.1.2 Identifiers

In comparison to keywords, identifiers are alphanumeric strings which are
used by the user for variable names, POU names, constants etc. . The for-
mat of an identifier is fixed by the IEC.

An identifier is a series of letters, numbers and understroke character (_)
which must start either with a letter or an understroke character.

The understroke is significant in the identifiers i.e. AB_C is different from
A_BC.

Multiple understrokes following directly one after the other are not allowed.

. With the activation of WinSPS function switch /O2, the checking is tur-
ned off so that multiple understrokes may be allowed to appear in the
symbolic identifiers.

As there is no difference between uppercase and lowercase letters, the iden-
tifier
“Hopper_Empty” is identical to “HOPPER_EMPTY” or “hopper_empty”.

Data model7–4

1070 072 305-104 (03.03) GB

An identifier may be maximum 32 characters long.

Examples:

Right: Wrong:

VOLTAGE_REGULATOR VOLTAGE__REGULATOR

_Turningdirection_plus _Turningdirection_+

Marker_2 2_Marker

_1S15 1S15

Input_0_7 Input 0 7

Output_W4 Ouput_%W4

7.1.3 Literals

Depending upon the data type, three different types of literals are available:

D Numeric literals
D String literals
D Time literals

Numeric literals
Numeric literals can be used for numbers as bit sequence as well as for inte-
gers and floating point numbers. The following table shows the classification
of the numeric literals.

Characteristic Examples

Boolean data TRUE (not equal to 0)
FALSE (0)

Integer literals –12
0
123_456
+986

Binary literals 2#11111111 (255 decimal)
2#11100000 (240 decimal)
2#1111_1111_1111_1111 (65535 decimal)

Octal literals 8#377 (255 decimal)
8#340 (240 decimal)

Hexadecimal literals 16#FF or 16#ff (255 decimal)
16#1000 (4096 decimal)

Floating point +523.31
–0.08
398E+4 (Exponent)
4e2
–34E–15

Boolean data is represented by the keywords FALSE and TRUE . Likewise,
in case of physical addresses, one is allowed use of 0 in place of FALSE and
1 in place of TRUE.

Data model 7–5

1070 072 305-104 (03.03) GB

Decimal literals are represented in traditional style. They can have a leading
sign (+ or –). Base-specific numbers may not have any sign.

The letters A to F for the hexadecimal numbers 10 to 15 can be written in
uppercase or lowercase.

Understroke characters introduced for better readability are allowed and are
not significant. Leading understroke characters are not allowed.

Floating point numbers can be written with a decimal ”.” as punctuation mark,
or can be written in exponential form. Even in this case, leading signs are
allowed.

String literal
A string literal (earlier ASCII constant) is a sequence of zero or more charac-
ters which are enclosed by single quotation marks (’).

The maximum length is manufacturer-dependent and for the Bosch control-
ler, it’s value is presently 63 characters.

The string terminator ’\0’ is automatically added.

Displayable characters out of the standard ASCII character set:
Hexadecimal 20 to 7F.

Characters outside this range can be represented with a leading $ sign (e.g.
$80).

In addition, the IEC provides for special characters which begin with the dol-
lar sign. With this, characters can be formatted for outputting on display units
or printers.

Examples:

Character combination Explanation

$$ Single dollar sign

$’ Single quotation mark

$R or $r Carriage return (CR = $0D)

$L or $l Linefeed (LF = $0A)

$P or $p Formfeed (FF = $0C)

$N or $n New row

$T or $t Tab

Data model7–6

1070 072 305-104 (03.03) GB

. In addition to IEC 61131-3, Bosch allows direct use of umlauts.

Examples for string literals:
’ABC_123’ (* Output: ABC_123 *)

’’ (* Empty string *)

’ ’ (* String of length 1,
 with space *)

’$’’ (* Output: ’ *)

’RL$0D$0A’ (* String of length 4,
 each with 2 CR and LF *)

’$$1.00’ (* Output: $1.00 *)

’$9Aberd$84mpfung’ (* Output: Überdämpfung *)

’Smörgåsbord’ (* allowed by Bosch ! *)

Time literals
With the time literals, values for time duration, time and date are formed.

The IEC allows a short form for time literals.

Time type Examples Short
form

Time duration TIME#1h_15m_30s_60ms
TIME#14ms

T#

Time of day TIME_OF_DAY#11:36:15.20 TOD#

Calendar date DATE#2001–04–09 D#

Date and time DATE_AND_TIME#2001–04–09–11:36:15.20 DT#

The type time duration is used for processing a relative time. The other types
in comparison to this are used for absolute day of time and date.

Understroke characters introduced for better readability are allowed and are
not significant.

In case of time duration, positions, which are not relevant, may be left out. A
time duration may “overflow”.

Example of non-relevant positions and an overflow:
T#80m_15s corresponds to T#1h_20m_15s (overflow) and may be written
both ways. As a granulation in milliseconds is not necessary in this example,
the corresponding positions may be left out.

Data model 7–7

1070 072 305-104 (03.03) GB

7.1.4 Delimiter

Delimiters are special characters that are used for different purposes. Thus,
colon is for example used not only for the time within the literal “time of day”
but also for defining a data type name.

The following table contains all delimited characters.

Name / Function Character

Space

End Of Line (CR+LF, EOL : end of line)

Beginning of a comment (*

End of a comment *)

Plus +

Minus –

Multiplication *

Division /

Exponent as operator **

Exponent in case of floating point literal e

Hash sign #

Dollar sign $

Parenthesis ()

Square brackets []

Percentage sign %

Ampersand sign &

Quotation marks ’

Comma ,

Semicolon ;

Decimal sign .

Dot dot ..

Colon :

Assignment symbol :=

Assignment symbol for PROGRAM call =>

Prefix time literals T#, D#, TOD#, DT#
TIME#,
DATE#,
TIME_OF_DAY#,
DATE_AND_TIME#,
D, H, M, S, MS

Data model7–8

1070 072 305-104 (03.03) GB

7.1.5 Comments

In addition to the said language elements, there is an option to add com-
ments which are excluded from the program processing.

Comments must be enclosed at the beginning and end with special charac-
ter combination (* or *).

Nested comments are not allowed.

Comments may be added at those positions where spaces are allowed.

In case of programming language instruction list (IL), comments may be
used within an instruction row only at the end of the line.

Within comments, all characters out of the ANSI character set, including um-
lauts, are allowed.

. The comment marking semicolon “;” used in the classical program-
ming is not allowed.

Examples:
(* IEC compatible comment marking *)
LD %IB4 (* IL comment *)

Incorrect examples:
(* (* nested comments are not allowed *) *)
LD (* not allowed in case of IL! *) %IB4

Input of comments
through WinSPS

In the declaration tables of the WinSPS editor, the comments can be entered
in a column meant for the purpose. The comment is given at the end of the
respective line end. No comment markings “(* *)” must be entered, these are
automatically added by WinSPS, refer to the illustration.

Comments input: The comment markings are automatically set by WinSPS.

Data model 7–9

1070 072 305-104 (03.03) GB

7.2 Data types

The characteristic of a variable is determined from the data type. For exam-
ple, for time operations other data types are required in comparison to the
data types for floating point arithmetic.

In the IEC, the important data types have been standardized. They are refer-
red to as “elementary data types” .

In addition to this, there is an option of defining the user-specific data type.
These are called “derived data types” or also “type definitions”.

Another data type of the IEC is used for standard functions. These are “gene-
ric data types”.

7.2.1 Elementary data types

Elementary data types are standardized in the IEC 61131-3 and are predefi-
ned by keywords (e.g. BOOL, SINT, etc.).

Data types are used for the declaration of the variables, refer to section 7.3.

The initialization value of a data type is fixed in the declaration part using the
assignment operator ”:=”. If no initialization value is assigned, the standard
value defined by the IEC is assumed to be the default value, refer to the follo-
wing table: Default value.

The following table shows all usable data types. In addition to this, the IEC
specifies the data types LINT, ULINT and LWORD, which are not supported
by the Bosch controller.

Data model7–10

1070 072 305-104 (03.03) GB

Key word Data
width
(Bit)

Default value Explanation

BOOL 1 FALSE Logical value
(not equal to 0 => TRUE, equal to 0 => FALSE).
The values 0 = FALSE and 1 = TRUE may be used (ma-
nufacturer-specific).

BYTE 8 0 Bit sequence of length 8 (0 to 255).

WORD 16 0 Bit sequence of length 16 (0 to 65535).

DWORD 32 0 Bit sequence of length 32 (0 to 4,294,967,295).

SINT 8 0 Short integer, figure with a sign
(–128 to +127).

INT 16 0 Integer, figure with a sign
(–32768 to +32767).

DINT 32 0 Double integer, figure with a sign
(–2,147,483,648 to +2,147,483,647).

USINT 8 0 Unsigned short integer, figure without a sign with an
adjustable figure base in the value range (0 to 255).

UINT 16 0 Unsigned short integer, figure without a sign with an ad-
justable figure base in the value range (0 to 65,535).

UDINT 32 0 Unsigned double integer, figure without a sign with an
adjustable number base in the value range
(0 to 4,294,967,295).

REAL 32 0.0 Floating point number = Floating Point (Double word)
(1,175494351e–38 to 3,402823466e+38)

LREAL 64 0.0 Floating point number = Floating Point (Quadruple word)
(2,2250738585072014e–308 to
1,7976931348623158e+308)

TIME 32* T#0s Time duration Input in hours (h), minutes (m), seconds
(s), milliseconds (ms)

DATE 32* D#1900–01–01 Calendar date. Format: Year–Month–Day

TIME_OF_DAY 32* TOD#00:00:00 Time. Format: Hours:Minutes:Seconds
(24 Hours time format)

DATE_AND_TIME 64* DT#1900–01–01–00:00:00 Date and time

STRING Variable,
max. 63
Character
*

’’ (Empty string = ’$00’) ASCII string. Representation: Hexadecimal 20 to 7F;
characters outside this range with leading $ sign (e.g.
$80). The character string is enclosed on the left and the
right side by a quotation mark (e.g. ’Test’). Special con-
trol characters can also be entered.

* manufacturer or system dependent

Data model 7–11

1070 072 305-104 (03.03) GB

7.2.2 Derived data types (Type definition)

Derived data types – also called type definition – are user defined data types
which are based on the elementary data types. With type definitions, new
data types with extended or altered attributes can be generated. In addition
to this, very complex data models can be realized.

Type definitions can be made locally for the current POU, or globally for the
entire project, also refer to sections 5.1 and 5.5.

For local use, derived data types are defined in the declaration part of the
POU within the keywords TYPE ... END_TYPE.

Example of type definitions:
TYPE
 Unsigned : UINT;
 Signed : INT := –1;
 ChildAge : USINT (0..17);
 Children : ARRAY [1..10] OF ChildAge;
END_TYPE

The example shows type definitions “Unsigned” and “Signed”, which are de-
rived from the elementary data types UINT or INT, resp. . The user defined
data type “Signed” moreover gets the initial value “–1”.
The definition of the derived data type “ChildAge” is based on the data type
USINT with a limited range (not supported as yet). The example of the array
definition definition “Children” shows that derived data types can be used
again for the new derivations.

Other characteristics
Other characteristics can be assigned to the data types in order to generate
individual and complex data types:

D Initial value
D Enumeration
D Range
D Array
D Data structure

Initial value
An initial value can be assigned to the derived data type using the assign-
ment operator “:=”, also refer to section 7.3.2. If the assignment is missing,
the standard default value of the elementary data type is used, refer to sec-
tion 7.2.1.

Examples:
TYPE
 Signed : INT := –1;
 InitDate : DATE := d#2000–01–01;
 InitStr : STRING (63) := ’< input please >’;
END_TYPE

Data model7–12

1070 072 305-104 (03.03) GB

Enumeration (ENUM)
An enumeration is a list with names (text constants). These names can be
used for the processing of variables instead of values (numeric literals). All
names are “enumerated” while defining in a name list. The enumeration is
marked by parenthesis “()” .

Examples:
TYPE
 WeekDays : (Mo, Tu, We, Th, Fr);
 WeekendDays : (Sa, Su);
END_TYPE

In the example, two enumerations are defined. The enumeration “Week-
Days” contains five names (text constants), the list “WeekendDays” contains
two names.

WinSPS converts (internally) the text constants into an enumeration of inte-
gers with the help of the compiler. Every enumeration begins with the value
“0”. All the following elements are numbered in the increasing order.

In the example given above, WinSPS uses the following internal numerical
constants:

Mo Tu We Th Fr Sa Su

0 1 2 3 4 0 1

With the variable declaration of an enumeration , the names can be used in
the program. The internal numbering is not visible at any point of time.

Example (programming language ST):
VAR
 AtWork : WeekDays :
 AtHome : WeekendDays;
END_VAR

 AtWork := Mo;
 AtHome := Su;

RANGE

. Ranges are not supported as yet!

ARRAY
See Section 7.3.6.

Data structure (STRUCT)
See Section 7.3.7.

Data model 7–13

1070 072 305-104 (03.03) GB

7.2.3 Generic data types

With the help of the generic data types, the elementary data types can be
integrated into groups. They are started with the prefix “ANY”. The following
data types are integrated into groups.

D Signed/unsigned integer (ANY_INT)
D Floating point number (ANY_REAL)
D Numbers (ANY_NUM)
D Bit string (ANY_BIT)
D Date, time (ANY_DATE)
D All above-mentioned types as well as strings, time duration and derived

data types (ANY)

With the grouping, a hierarchical order is also established. The following illu-
stration shows the hierarchical levels, where the data type ANY is placed at
the highest level. The data types LINT, ULINT and LWORD are not suppor-
ted by Bosch and are not specified in the illustration.

. Generic data types (ANY...) are used only for illustrative group forma-
tion of elementary data types. They can not be used for the declaration
of variables or for program processing. The declaration takes place in-
stead through the elementary data types associated with the group,
e.g. “BYTE” for the group “ANY_BIT”.

ANY

ANY_NUM ANY_BIT ANY_DATE STRING TIME Derived
Data types

ANY_REAL ANY_INT BOOL DATE

SINT

TIME_OF_DAY
DATE_AND_TIME

BYTE
WORD
DWORD

DINT
USINT
UINT
UDINT

INT
REAL
LREAL

Hierarchical order of the generic data types.

Data model7–14

1070 072 305-104 (03.03) GB

Overloaded functions
The characteristics of the generic data types are used in many standard
functions. As a result of this, input variables of a function can not only be ap-
plied for one but multiple data types. With this characteristic, they are termed
as overloaded or overloadable functions, refer to section 12.1.1.

. Generic data types can be used only for standard and manufacturer
functions. The programming of overloaded functions (user functions)
is not possible.

Data model 7–15

1070 072 305-104 (03.03) GB

7.3 Variables

Variables have the following characteristics:

D Variables represent user related data ranges.
D In comparison to the constants, the contents of a variable can be chan-

ged.
D Variables are declared in the declaration part of a POU, or in the editor for

global variables. Here, a data type is assigned to an identifier (variable
name).

D The use of variables according to their types is checked so that access in
incorrect data format can be prevented.

D With the declaration of a variable, initial values for the program start can
be specified.

D Variable attributes allow additional features such as remanence.
D The memory area of a variable is automatically assigned. Physical ad-

dresses form an exception.

7.3.1 Declaration of variables

All variables are declared in the declaration part of a POU. In the instructions
part, no variables may be declared. WinSPS provides a special editor for glo-
bal variables, refer to section 5.4.

The declaration of a variable should get illustrated with the following exam-
ple:

Variable type

Variable type end

Initial value

Attribute

Data TypeVariable name

VAR RETAIN

wVariable : WORD := 15;

END_VAR

Elements of a variable declaration (example)

The use of variables can be influenced through the variable type , refer to
section 6.3.1. Depending upon the variable type, variables are integrated
into a block.

Attributes mark a special characteristic of the variables or a variable block,
refer to section 7.3.8.

Rules applicable for identifiers also apply for variable names, refer to sec-
tion 7.1.2.

Data model7–16

1070 072 305-104 (03.03) GB

The data type determines the characteristic of the variables, refer to section
7.2.

Initial values are the starting value for the program start or for the first call to
the function or function blocks, refer to section 7.3.2.

Every declaration row is terminated with a semicolon “;”. Every variable
block is ended with “END_VAR”.

In the declaration part, any number of variable blocks may be specified. The
frequency of same types of variables and the sequence can be anything. In
case of entries in the declaration tables, WinSPS integrates scattered varia-
bles of the same variable type into one block.

While declaring an instance for function blocks, the FB name is given in
place of the data type, for structure of the structure name, also refer to sec-
tion 6.6 or 7.3.7, resp. .

Examples of different variable declarations:
VAR
 Local AT %Q1.0 : BOOL; (* Physical address *)
 In1 : INT := 15; (* Variable with initial value *)
 In2 : DATE; (* Data type: Date *)
 Counter : CTU; (* Instance of a FB *)
 Person : Person_Str; (* Decl. of a structure *)
 V1, V2 : WORD; (* two decl. in a row *)
END_VAR

VAR_OUTPUT RETAIN
 Out : WORD; (* Output variable with attribute *)
END_VAR

7.3.2 Initialization of variables and remanence

With the declaration of a variable using the assignment operator “:=”, an in-
itial value (starting value) can be asigned. If the assignment is missing, the
standard default value of the elementary data type is used, refer to section
7.2.1. Thus, variables always have specific initial values.

Examples:
VAR
 Logical1 : BOOL := TRUE;
 Negative : INT := –1;
 InitDate : DATE := d#2000–01–01;
 InitStr : STRING (63) := ’< input please >’;
 NoInit : BOOL; (* Standard default value for
 data type BOOL = FALSE *)
END_VAR

Variable types
Initial values may be specified in all variable types except in VAR_IN_OUT
and VAR_EXTERNAL. Global variables are initialized within VAR_GLO-
BAL.

Data model 7–17

1070 072 305-104 (03.03) GB

DANGER
VAR_IN_OUT cannot be assigned an initial value. The initialization
can instead take place in the FB call with the specification of the cor-
responding formal parameter.
In case initial values are specified within the declaration of
VAR_IN_OUT, WinSPS does not generate any error message during
compilation or linking. The initial values are however not set in the
controller!

One-time initialization
The initial value is assigned to the variables only once. In case of declara-
tions within the PROGRAM POU, the assignment takes place at the start
and also during the first run of the program. Initial values, which are declared
within a FUNCTION_BLOCK , are assigned during the first call. As a FUNC-
TION does not have a “memory”, initial values are more or less assigned with
every call.

Remanence characteristics (RETAIN)
A remanence characteristic is ensured by the variable attribute RETAIN (re-
fer to section 7.3.8). Remanence means that the values of a variable are re-
tained after a power failure.

Moreover, remanence ranges are configured in the organization module
OM2. Pay attention to the instructions in the software manual “PCL and
CL550, Programming and Operation” (order no. 1070 072 189) or in “iPCL,
System Description and Programing Manual” (order no. 1070 073 875).

. All variables are basically handled as with RETAIN attribute. Excep-
tions are the standard FBs. These are basically not remanent i.e. they
are initialized after every STOP/RUN switchover.

Cold reset
Cold reset means : Initialization of all variables.

Cold reset is the type of start, in case of which entire variables and memory
areas are reinitialized. All variables are overwritten by the initial or default
values of the data type. This process, which is also termed as restart, can
take place automatically under certain circumstances (e.g. after power fai-
lure) or can even be carried out manually by the user (e.g. by pressing the
reset button).

Warm start
Warm start means : Initialization of the non remanent variables.

During a warm start of the controller (e.g. after a switchover STOP/RUN),
the values from the last PLC cycle are restored even if initial values were
specified. The remanence characteristic thus has priority over the initial va-
lues.

Restart of the PLC system and its application program at the interruption
point (Hot Restart) explained in the IEC 61131-3 is not supported by the
Bosch controller.

Data model7–18

1070 072 305-104 (03.03) GB

Startup characteristics
Here, the different starting options and the characteristics are shown:

Case 1: Program loading
Program loading results in the initialization of all the variables (cold start).

Case 2: Stopping after error, as well as pressing the reset key (CL550)
This asynchronous program break results in the initialization of all the varia-
bles (cold reset).

Case 3: Switchover between STOP/RUN mode
While changing over from STOP to RUN without changing the PLC program,
the non-remanent variables are initialized (restart, warm start). The rema-
nent variables retain their runtime values.

Case 4: Restart after power failure or through regular starting of the
controller from a mains switch or “booting up” (PCL) resp.
After starting the controller, the non-remanent variables are initialized (re-
start, warm start). The remanent variables retain their runtime values.

Further detailed information concerning the remanence and starting charac-
teristics can be found in the software manual “PCL and CL550, Program-
ming and Operation” (order no. 1070 072 189) or in “iPCL, System
Description and Programing Manual” (order no. 1070 073 875).

7.3.3 Access to variables

The access to variables within the instructions part is dependent upon the
programming language used. Further information can be found in the re-
spective section of the programming language.

Data model 7–19

1070 072 305-104 (03.03) GB

7.3.4 Physical addresses

Physical PLC addresses are

D Inputs
D Outputs
D Marker

. Physical addresses may be declared only within the POU of the type
“PROGRAM” in the variable types “VAR” or “VAR_GLOBAL”. In the
function block, the import through “VAR_EXTERNAL” is possible, ho-
wever, not in the functions.

Format
Physical addresses are differentiated from the other variables through prefi-
xed “%” character. Subsequently follows a prefix which is specified by the
IEC:

Prefix Explanation

I Input

Q Output

M Marker

With the flag for the data format following this, the data width is encrypted.
The check, whether the data matches the data type, is not performed. The
address data following this is manufacturer-specific. In the WinSPS, two
positions – separated by a decimal – are realized.

1st Position: Byte number
2nd Position: Bit number

In case of bit addresses, the bit number is specified. In case of all other data
formats, the bit addresses and the decimal are left out.

Flag Data format Width Example

X or none Bit 1 bits %IX0.0 or %I0.0

B Byte 8 bits %IB0

W Word 16 bits %QW16

D Double word 32 bits %MD4

Declaration and access

. Physical addresses must be declared.

The keyword “AT” is specified in the declaration block before the physical ad-
dress and separated by a space. With this, the assignment to the physical
address takes place. The assignment of symbolic names is not compulsory
but recommended. As a rusult of this, physical addresses can be directly
shown or accessed through a symbolic name.

Data model7–20

1070 072 305-104 (03.03) GB

Examples (programming language ST):
VAR
 AT %Q0.0 : BOOL; (* directly shown variable *)
 bIn AT %I0.1 : BOOL; (* with symbolic names *)
 wM4 AT %MW4 : WORD; (* marker as word operator *)
END_VAR

%Q0.0 := bIn; (* access *)

The example contains the declaration of the marker word with the data type
WORD. This variable cannot be accessed by mistake with another data type
such as DWORD or INT.

CAUTION
WinSPS manages physical addresses with the help of the symbol
file. Entries for inputs, outputs and markers are automatically taken
up and the same may not be changed!

Access outside the
PROGRAM POU

Outside the PROGRAM POU, physical addresses can be accessed in diffe-
rent ways:

1) Through the call interface of functions and function blocks
2) As global data with VAR_GLOBAL and VAR_EXTERNAL

(not allowed in case of functions)

Example concerning 1):
PROGRAM X
VAR
 AT %Q2.0 : BOOL;
 X1 AT %I2.0 : BOOL;
 ...
END_VAR

 FB1_Inst (Par_1:=%Q2.0, Par_2:=X1);
END_PROGRAM

FUNCTION_BLOCK FB1
VAR_IN_OUT
 Par_1 : BOOL;
 Par_2 : BOOL;
END_VAR
 ...
END_FUNCTION_BLOCK

The physical addresses are declared in the declaration part of the PRO-
GRAM POU as local variables. During the call to the “FB1”, these addresses
are assigned to the formal parameters and thus are transferred to the func-
tion block. Within the “FB1”, these physical addresses are accessed using
the names of the formal parameters “Par_1” and “Par_2”.

Data model 7–21

1070 072 305-104 (03.03) GB

Example concerning 2):
PROGRAM Y
VAR_GLOBAL
 AT %Q2.0 : BOOL;
 X1 AT %I2.0 : BOOL;
END_VAR
...

 FB2_Inst ();
END_PROGRAM

FUNCTION_BLOCK FB2
VAR_EXTERNAL
 %Q2.0 : BOOL;
 X1 : BOOL;
END_VAR
 ...
END_FUNCTION_BLOCK

Here, the physical addresses are declared as global variables. During call to
the “FB2”, they are not transferred to the function block. In the declaration
part of the “FB2”, the addresses are imported via “VAR_EXTERNAL”. As a
result of this, the variable names of the addresses do not change.

7.3.5 String variables

The data type STRING for strings allows a flexible length up to 63 charac-
ters. With the declaration, a string length can be reserved. The length is gi-
ven after the keyword “STRING” within the parenthesis “()”. If there is no
length data, it is automatically set to 32. The string terminator ’\0’ is automati-
cally appended and must not be included in the data concerning the string
length.

For string variables, the rules for string literals are applicable, refer to section
7.1.3.

. Please note that the string length must not be exceeded when strings
are assigned to a variable (see example below). The compiler will not
detect an exceeding. The consequence will be that other data areas of
the SPS are overwritten during runtime.

Examples:
VAR
 sz_8_Char : STRING(8);
 sz_8_Initialized : STRING(8) := ’8 characters’;
 sz_32_Char : STRING; (* Standard length = 32 *)

 (* faulty strings because of exceeded length*)
 sz_Error_1 : STRING(8) := ’9 characters’;
 sz_Error_2 : STRING := ’This string consists of
 more than 32 characters’;
END_VAR

Data model7–22

1070 072 305-104 (03.03) GB

7.3.6 ARRAY

Single element and
multielement variables

A single element variable represents a single element of a data type. These
can be already mentioned physical addresses, or any simple variable.

Examples:
 bIn AT %I0.1 : BOOL; (* Physical address *)
lrFloat : LREAL; (* long real number *)
szStr : STRING := ’Hello’; (* String *)

In contrast to the single element variables, with multi-element variables, ar-
rays and structures (refer to section 7.3.7) can be formed.

Array
An array consists of a series of variables of the same data type. The varia-
bles contained in an array are termed as array elements. The individual array
elements can be accessed through an array index. The initial value and the
end value of the array index are determined from the array limits.

Array

Array index

Lower array limit Upper array limit

3. Array element

15 4 32 9 0

1 2 3 4 5

Example for an array with 5 array elements

Array definition
Array_1: ARRAY[1..5] OF INT := [15, 4, 32, 9, 0];

The example shows an array with the name “Array_1” . It contains five array
elements of data type INT starting with the array index 1.

The array limits are specified in the square brackets. In this case, the upper
limit is separated from the lower limit by two dots: For the array limits integer
numeric literals are used.

The specification of initial values is similarly possible for arrays. Here, a spe-
cial syntax is to be followed, see below: Initialization of arrays.

. The maximum array size is presently limited to 502 Bytes. If the allowed
array size is exceeded, an error message is given out during compila-
tion.

Data model 7–23

1070 072 305-104 (03.03) GB

DANGER
While accessing array elements, the array limits may not be excee-
ded.
Access above array limits is presently not checked and leads to un-
controlled behavior!

Access to array elements
The access in the instructions part takes place using variable names follo-
wed by square brackets, in which the array index is specified.

Examples
Example for the declaration of an array
and access in the programming language IL:
VAR
 aValue : ARRAY[1..5] OF SINT;

(* Array declaration *)
 siElement : SINT; (* Var. for test purposes *)
END_VAR

LD 15 (* Array initialization *)
ST aValue[1]
LD 4
ST aValue[2]
LD 32
ST aValue[3]
LD 9
ST aValue[4]
LD aValue[5] (* contents of the 5th array

 element *)

Example for access in the programming language ST:
 aValue[1] := 15; (* Array initialization*)
 aValue[2] := 4;
 aValue[3] := 32;
 aValue[4] := 9;
 siElement := aValue[5]; (* Contents of the 5th

 array element*)

Input of arrays

Example for the entry of arrays in the declaration table .

Data model7–24

1070 072 305-104 (03.03) GB

In combination with structures, arrays are declared not inside a variable
block but in the type definition. This case is explained in detail in section
7.3.7.

Mutidimensional arrays
Mutidimensional arrays can be created by specification of multiple comma
separated array limits.

The array elements are accessed using the comma separated array index.

Example:
VAR
 aValue : ARRAY[1..5,0..15] OF SINT;
END_VAR

 aValue[1,0] := 15; (* First array element*)
 aValue[5,15] := 0; (* Last array element*)

The example shows a two-dimensional array. The array size can be determi-
ned by multiplying the number of array elements of every dimension:

1st Dimension: [1..5] = 5 Elements
2nd Dimension: [0..15] = 16 Elements
In the example shown above, 5 * 16 = 80 measured values can be realized.

Initialization of arrays
For the initialization, the statements concerning the “Initialization of varia-
bles” from section 7.3.2are applicable.

The initialization of arrays can take place using two different methods:

D Initialization during the declaration
D Initialization in the instructions part at the runtime

Depending upon the application, both methods have advantages and disad-
vantages:

Advantages Disadvantages

Initialization in
the
declaration part

For the initialization, there is
no processing time in the
PLC.

Individual array elements
can be initialized with great
difficulty in case of complex
arrays.
The clarity suffers.
Array elements can be assi-
gned only simple literals.

Initialization in
the
instructions part

Complex arrays can be
clearly initialized using ap-
propriate algorithms.
Array elements can be assi-
gned extensive part expres-
sions e.g. with complex
calculations.

Depending on the array
size, the initialization at the
runtime requires processing
time in the PLC.
In order to avoid repeated
initialization operations, sui-
table mechanisms must be
programmed.

Data model 7–25

1070 072 305-104 (03.03) GB

Array initialization
in the declaration part

For the array initialization in the declaration part, special syntax is used. This
must be illustrated with the help of a few examples:

Single dimensional array:
Beginning with the first array element, the initial values are entered in an
ascending order and delimited by comma. The complete expression is enc-
losed by square brackets.

aExpl1 : ARRAY[1..3] OF INT := [5,10,15];

This initialization is equivalent to the following assignment (programming
language ST):

aExpl1[1] := 5;
aExpl1[2] := 10;
aExpl1[3] := 15;

Leaving out of initial values:
With the assignment, not all array elements should be initialized. The array
elements lying at the back may be left out during initialization.

aExpl2 : ARRAY[1..3] OF INT := [5,10];

This initialization is equivalent to the following assignment:

aExpl2[1] := 5;
aExpl2[2] := 10;

The last element is not initialized and as a result contains the standard de-
fault value “0” of the elementary data type “INT”.

Multiplier:
With the multiplier, multiple elements following after one another can be in-
itialized with the same value. The multiplier is set before the parenthesis.
The initial value is given inside the parenthesis.

aExpl3 : ARRAY[0..5] OF INT := [3(7),2(13),115];

In the example, the array elements are initialized as shown below:

aExpl3[0] := 7;
aExpl3[1] := 7;
aExpl3[2] := 7;
aExpl3[3] := 13;
aExpl3[4] := 13;
aExpl3[5] := 115;

Data model7–26

1070 072 305-104 (03.03) GB

Moreover, a multiplier can also be used on multiple values. The values are
delimited by comma.

aExpl4 : ARRAY[0..5] OF INT := [2(7,13),2(115)];

This initialization with multiplier is equivalent to the following assignment:

aExpl4[2] := 7;
aExpl4[1] := 13;
aExpl4[2] := 7;
aExpl4[3] := 13;
aExpl4[4] := 115;
aExpl4[5] := 115;

Mutidimensional arrays:
In case of multidimensional arrays, there is a nesting of square brackets. A
combination [] is required for each dimension. Thus for example, a three di-
mensional array is initialized with three nested brackets levels [[[]]]. The
bracket sequence is illustrated through the following example.

aExpl5 : ARRAY[1..3,1..2] OF INT :=
[[1,2],[3,4],[5,6]];

In the example, the array elements are initialized as shown below:

aExpl5[1,1] := 1;
aExpl5[1,2] := 2;
aExpl5[2,1] := 3;
aExpl5[2,2] := 4;
aExpl5[3,1] := 5;
aExpl5[3,2] := 6;

The multiplication factor can also be used for multidimensional arrays. In this
case, the multiplication factor must be adjusted to the dimension range:

aExpl6 : ARRAY[1..2,1..3] OF INT := [2([3,6,9])];

This initialization is equivalent to the following assignment:

aExpl6[1,1] := 3;
aExpl6[1,2] := 6;
aExpl6[1,3] := 9;
aExpl6[2,1] := 3;
aExpl6[2,2] := 6;
aExpl6[2,3] := 9;

The following example shows the complete initialization of a three dimensio-
nal array. Each array element contains the value “1”:

aExpl7 : ARRAY[1..4,1..2,1..3] OF INT :=
[4([2([3(1)])])];

Data model 7–27

1070 072 305-104 (03.03) GB

Array initialization at the runtime
In case of initialization at the runtime and the evaluation of array elements,
multidimensional arrays can be processed very clearly with the help of recur-
sive statements. The following example shows the array access with the
help of FOR loop of the programming language ST (also refer to section
9.2.7):

VAR
 aExpl8 : ARRAY[1..4,1..2,1..3] OF INT;
 i, j, k : INT;
 bInit : BOOL := TRUE;
END_VAR

 IF (bInit = TRUE) THEN
 FOR i := 1 TO 4 DO
 FOR j := 1 TO 2 DO
 FOR k := 1 TO 3 DO
 aExpl8[i,j,k] := i * 2 + (k * 5);
 END_FOR;
 END_FOR;
 END_FOR;
 bInit := FALSE;
 END_IF;

Using the IF selection statement of the boolean variable “bInit”, the initializa-
tion is controlled so that the array is initialized only once. The initialization is
as a result actuated only at the start of the program or during the first call to
the POU resp. .

. Array initializations at the runtime require processing time in the cyclic
PLC program. This time must be taken into consideration in the calcu-
lation of the maximum PLC cycle time.

Complex data model
With combinations of arrays and data structures, very complex data objects
can be formed:

D Array in structure
D Arrays of structures

The options are illustrated in section 7.3.7.

. These complex data models are in preparation and allowed in the
WinSPS higher version 3.10.

Definition or declaration
of arrays?

Arrays may be specified within a variable declaration VAR ... END_VAR as
well as within a type definition TYPE ... END_TYPE. Both variants are allo-
wed and are different from each other in the sense that within the type defini-
tion only the “outline” of the array is defined. Within the variable declaration
in comparison, a concrete data object is set up.

Data model7–28

1070 072 305-104 (03.03) GB

Inside the type definitions, arrays should be set up when they must be refer-
red in this definition block.

Example of array in structure
TYPE
 aMeasValues : ARRAY [1..20] OF INT;
 Measurement :
 STRUCT
 szMeasObject : STRING (20);
 dtMeasDate : DATE;
 MeasValue : aMeasValues; (* Array in structure *)
 END_STRUCT;
END_TYPE

Only with the declaration of an instance of this structure, a data object for
accessing the structure elements and array elements is set up.

7.3.7 Data structures (STRUCT)

Arrays consist of elements of the same data type. A data structure (in short:
structure) in comparison allows integration of various data types related to a
data object.

Definition
Structures are user-defined data types. These are defined within the key-
words TYPE and END_TYPE, refer to section 7.2.2. The structure elements
are specified between the keywords STRUCT and END_STRUCT. The
structure elements are entered like rows of a variable declaration, refer to
section 7.3.1. Directly before the keyword STRUCT, the structure name is
specified followed by a colon “:”. Rules applicable for identifiers also apply for
names, refer to section 7.1.2. END_STRUCT is terminated with a semicolon
“;”.

Common syntax for the definition of structures:
TYPE
 Structure_name :
 STRUCT
 Structure_element1 : Data type := Initial value;
 Structure_element2 : Data type := Initial value;
 Structure_elementn : Data type := Initial value;
 END_STRUCT;
END_TYPE

Declaration and access
With the definition, first of all the “outline” of the structure is specified. Only
with the declaration of an instance of this structure a data object for acces-
sing the structure elements is set up. Due to instance building, a structure
can be used multiple times. Each instance here has its own range.

. The maximum size of each structure is presently limited to 502 Bytes. If
the allowed size is exceeded, an error message is given out during
compilation.

Data model 7–29

1070 072 305-104 (03.03) GB

The structure elements are accessed via the dot-operator.

Example of definition and declaration of a structure and access to
structure elements in the programming language IL:
TYPE
 Person_Str:
 STRUCT (* Definition of a structure *)
 szName : STRING (20);
 szWeb : STRING (63);
 udiZIP : UDINT
 END_STRUCT;
END_TYPE

VAR
 Person1 : Person_Str; (* Declaration of structure *)
 Person2 : Person_Str; (* 2nd instance of structure*)
 ZIP := UDINT;
END_VAR

(* Access to structure *)
LD ’Katzenmeier’
ST Person1.szName
LD ’www.buero–fuer–informatik.de’
ST Person1.szWeb
LD Person2.udiPLZ
ST PLZ

Example for access in the programming language ST:
(* Access to structure *)
 Person1.szName := ’Katzenmeier’;
 Person1.szWeb := ’www.buero–fuer–informatik.de’;
 PLZ := Person2.udiPLZ;

Input of structures
For the entry and processing of structures, WinSPS provides input masks for
local and global type definitions, refer to section 5.1.3 and 5.5.2.

Example for definition of a local structure in the declaration table.

Data model7–30

1070 072 305-104 (03.03) GB

Complex data model
With combinations of arrays and data structures, very complex data objects
can be formed:

D Structure in structure
D Array in structure
D Arrays of structures

. These complex data models are in preparation and allowed in the
WinSPS higher version 3.10.

7.3.8 Variable attributes

In addition to the data type and initial value, attributes can be assigned to the
variables. Attributes mark a special characteristic of the variables. The follo-
wing attributes are defined in IEC 61131-3 :

Attribute Explanation

RETAIN Battery backed-up, remanent

CONSTANT Constant

R_EDGE * Rising edge

F_EDGE * Falling edge

READ_ONLY Write-protected

READ_WRITE Read and write access

* The attributes related to the edge control are presently not supported. Edge
control can be realised through the standard function blocks “R_TRIG” and
“F_TRIG”, refer to section 12.2.

. Up to and including the firmware versions 2.3 of PCL and 1.4 of CL550,
all variables are basically RETAIN handled. Exceptions are the stan-
dard FBs. These are basically not remanent i.e. they are initialized after
every STOP/RUN switchover.

“RETAIN” and “CONSTANT” refer to the complete part of a variable type and
are set directly behind the keyword of the variable type. The other attributes
can be set individually, however, not in combination with the definitive marks!

Simultaneous use of “CONSTANT” und “RETAIN” does not make sense and
is not allowed!

Data model 7–31

1070 072 305-104 (03.03) GB

Examples:
VAR RETAIN (* Variables with RETAIN characteristic *)
 wRemanent : WORD
 bRemanent AT %Q3.7 : BOOL;
END_VAR

VAR_ACCESS
 bState : CPU_3.%I5.3 : BOOL READ_ONLY;
 (* access path only read access *)
END_VAR

Attribute CONST and
DEFINE Editor

By assigning the attribute “CONSTANT”, a constant is generated instead of
a variable. This constant occupies in the PLC the memory location under-
lying its data type.

Alternately, in the so-called “DEFINE Editor” global constants are set up, re-
fer to section 5.6. Constants defined there do not occupy any memory loca-
tion in the PLC. It is recommended that the constants be always defined
using this editor and not using the variable attribute “CONSTANT”.

Application area of attributes
Attributes are not allowed the same way for all variable types:

Variable type RETAIN CONSTANT R_EDGE
F_EDGE

READ_ONLY
READ_WRITE

VAR Yes Yes – –

VAR_INPUT – – Yes –

VAR_OUTPUT Yes – – –

VAR_IN_OUT – – – –

VAR_EXTER-
NAL

– – – –

VAR_GLOBAL Yes Yes – –

VAR_ACCESS* – – – Yes

* The variable type VAR_ACCESS is presently not supported.

Input of attributes
In the declaration table for the variable declaration, attributes can be selec-
ted from a column meant for the purpose. WinSPS automatically sets this
individually or to a variable block in case of a definitive mark.

Data model7–32

1070 072 305-104 (03.03) GB

Example for the specification of attributes in the declaration table .

VAR
 byNone : BYTE := 16#0A;
END_VAR

VAR RETAIN
 byBuffered : BYTE;
END_VAR

VAR CONSTANT
 byConstant : BYTE := 16#0A;
END_VAR

Illustration of the above-mentioned example in the text form

Programming language Instruction List (IL) 8–1

1070 072 305-104 (03.03) GB

8 Programming language Instruction List (IL)

The instruction list (IL) as per IEC 61131-3 involves a machine-like lan-
guage. Machine-like means that the instructions can be directly converted
into the binary machine code of the PLC.

WinSPS and IL
Parallel to the IL as per IEC, programming can also be done in WinSPS in the
tried and tested, “classical” IL. The classical IL is called up in the editor and
monitor using the button IL , the instruction list as per IEC using the button
IEC .

. In order to prevent mixup with the established Bosch programming
languages, the following practice is used:
IEC-IL: Instruction list as per IEC 61131-3.
Bosch-IL: Classical instruction list (based on DIN 19239).

In this section, the IEC-IL is explained. For the programming in Bosch-IL, the
manual “PCL and CL550, Programming and Operation” (order no. 1070 072
189) or “iPCL, System Description and Programing Manual” (order no. 1070
073 875), is available.

Please pay attention to the programming examples concerning the IEC-IL in
the WinSPS help, chapter “Introduction to WinSPS”.

8.1 Instructions

In IL, execution instructions are specified for the PLC in a row. A complete
sequence of instructions (IL sequence) can stretch over multiple instruction
rows.

An IL instruction row is specified in the following format:

Label: LD %I0.7 (* Comment *)

Optional: Comment

Operand or list of operands

Operator or function name

Optional: Label

Instructions in IL

The Labelis optional. It is specified when a jump is made from another in-
structions row into this row, refer to section 8.4.2.

Programming language Instruction List (IL)8–2

1070 072 305-104 (03.03) GB

At the position operator , either an IL operator or a function name is speci-
fied. This describes the operation to be carried out. All possible operators are
listed in section 8.5.

There must be at least one delimiter between the operator and operand.
The space or the tab can be used as delimiter.

Operands are variables or constants, using which an operation (instruction)
is carried out using the operator. At the time of a function call, the operand is
an input parameter. Depending upon the type of the operation or the function
call, multiple operands can be specified as operand list delimited by
comma. For a few operators, no operand is necessary, e.g. “RET”.

In order to realise nesting, parenthesis are allowed, refer to section 8.4.3.

The label is optional. Comments may be given within an instruction row at
the end of the line. Also refer to section 7.1.5.

. The comment marking semicolon “;”used in the classical program-
ming is not allowed.

8.2 Working register and status bits

Working registers (accumulators), as you find in the classical Bosch-IL ap-
plication, do not exist in case of IL as per IEC 61131-3. However, there is a
“virtual” working register with the name “CR ”, refer to section 8.3.

Likewise, there are no status bits, which in the Bosch-IL, indicate the condi-
tions Interrupt, Carry, Overflow, Zero and Negation.

8.3 Current Result (CR) – the universal accumulator

Similar to the register for the “Result of Logic Operations” (RLO) out of
Bosch-IL, the IEC-IL recognizes an accumulator with the name “Current
Result” (CR). It is used to accept and process operands and results of the
PLC instructions.

Example of an evaluation of the CR:
M1: LD iOperand1

ADD iOperand2
ST iResult (* calculation result *)
EQ 100 (* comparison CR = 100 ? *)
JMPC M2 (* ...then jump to M2 *)

In the example, the instruction EQ is used, which accesses the current result
(CR). The CR contains the result of the addition generated by the instruction
Store (ST). It can be used until it is reset by an operation such as LD. A list of
IL instructions which influence the CR, is shown in the following table and in
the individual instruction descriptions in section 8.5.

Programming language Instruction List (IL) 8–3

1070 072 305-104 (03.03) GB

Behaviour in case of
different operators

Depending upon the operator (refer to section 8.5), the CR is influenced dif-
ferently:

Influence Explanation

create The operators LD and LDN create a CR i.e.
the CR is initialised with a new value.

process The instruction uses the CR of the preceding result and
modifies the same.
Examples: &, OR, ADD, MUL, GT, EQ, LE.

leave unchanged The instruction uses the CR of the preceding result,
however, it does not modify the same.
Examples: ST, S, R, RETC

set to undefined The following instructions of a CR, which is set as un-
defined, may not use the same for linking.
Example: JMP, CAL

In case of certain operators, the IEC leaves open, whether the CR is proces-
sed further, or must remain unchanged or must be set as undefined. A des-
cription of the CR behavior of the WinSPS is given in the sub-sections of
section 8.5.

Function calls
The CR allows itself to be used not only on a result of a instruction sequence
but also before that. In case of a function call for example, there is the option
of transferring the initial input parameters from the CR of the earlier executed
instruction without further specifications, refer to section 8.5.8.

Size and data type
In the real sense, the accumulator is a working register in the processor of
the PLC . However, in case of 61131-3, this accumulator is not assigned to a
fixed PLC memory. The CR is rather a “virtual” working register. As a result of
this, the CR lets itself be used in a flexible manner for various data types and
data widths. The universal accumulator CR can accept the following data ty-
pes:

D Generic data type, refer to section 7.2.3
D Instance of a function block

. Attention must be paid to the compatibility of the data types for opera-
tions following one after the other.

Programming language Instruction List (IL)8–4

1070 072 305-104 (03.03) GB

8.4 Program rules

8.4.1 IL sequences

An IL sequence starts with a load instruction (LD or LDN) and is not termina-
ted until a new load instruction is used. Absolute function block calls as well
as jump and reverse jump operations form an exception. These are termina-
ted on their own.

With the load instruction, the data type of the specified operand establishes
the allowed data type for the following operand in this sequence. Two opera-
tions following one after the other must be type-compatible. With the help of
the standard functions for type conversion, incompatible data types can be
converted, refer to section 12.1.3.

With the parenthesis, multiple nesting levels can be realized, refer to section
8.4.3.

The following syntax graph gives an overview of the IL sequences. The order
is from the left to the right. The usage of the individual command groups is
described in detail in section 8.5.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

End of Line

Label Definit.

Load Comm.

Unconditional FB Call

Command w/ parenth.

Assignment

Command w/o parenth.

FU Call

Set / Reset

Jump on condition

FB Call

Return on condition

Unconditional Jump

Unconditional Return

Syntax graph for IL sequences

Programming language Instruction List (IL) 8–5

1070 072 305-104 (03.03) GB

8.4.2 Label

The label is specified when a jump is made from another instructions row into
this row. The label may also be used alone in a row i.e. without an operator or
operand. If no label is specified in an instruction row, even the colon must be
left out.

Rules applicable for the identifiers also apply for the names of the labels, re-
fer to section 7.1.2.

. Labels may exist only at the beginning of a sequence i.e. before a load
instruction.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of the label

Example for use of labels:
M1: LD iResult
M2: ADD iOperand1 (* M2 is at this position

 not allowed! *)
ST iResult (* calculation result *)
LT 100 (* Comparison CR < 100 ?... *)
JMPC M1 (* ...then jump to M1 *)
JMP M3 (* ...otherwise jump to M3 *)

...
M3: LD iOperand2
M4: ST iOperand3 (* Label not allowed here:

 generates compiler error *)
...

8.4.3 Nesting levels, Parenthesis

IL sequences can be combined with the help of the parenthesis modifier, in
order to link the result with the CR. Such parenthesis modifier can be nested
in multiple levels.

For introducing a parenthesis level, an opening parenthesis “(” is placed di-
rectly after the operator. Every level is ended with a separate instruction row
with the closing parenthesis “)”.

Programming language Instruction List (IL)8–6

1070 072 305-104 (03.03) GB

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Arithmetic operators

Comparison

Logical operators

Operand

Syntax graph for commands without parenthesis

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

OperandArithmetic operators

Comparison

Logical operators Command w/ parenth.

Comm. w/o parenth.

FU Call

Assignment

Set/Reset

Syntax graph for command with parenthesis

The following table shows, for which operators a nesting level may be ope-
ned, also refer to section 8.5:

Logical
operators

Arithmetic
operators

Comparison

AND(
&(
ANDN(
&N(
OR(
ORN(
XOR(
XORN(

ADD(
SUB(
MUL(
DIV(

GT(
GE(
EQ(
NE(
LE(
LT(

. In comparison to the programming language ST, these are no ranking
of arithmetic operators in the IL . Thus for example, an addition has the
same priority during the processing as a multiplication. The proces-
sing can be specified through the sequence of the instruction rows
and through parenthesis levels.

Example for multiple nesting levels:
LD 5 (* 5 *)
ADD(2 (* 2 *)
ADD 4 (* 6 *)
MUL(3 (* 3 *)
SUB 1 (* 2 *)
) (* 12 *)
) (* 17 *)
ST iResult (* 17 *)

The example works out the following mathematical expression:
5 + (2 + 4 * (3 – 1))
In the comment, the current result CR is given according to the respective
instruction. Thus, the variable “iResult” contains the value 17.

Programming language Instruction List (IL) 8–7

1070 072 305-104 (03.03) GB

8.5 Instruction set

The following table shows a list of all IL instructions.

Modify operators
A few operators listed in the table can be modified in order to thus widen the
meaning:

N Negation of the operand:
Reversing the binary signal state (from TRUE to FALSE, or from FALSE to
TRUE),
or complement of one for a bit pattern (every single bit is reversed).
Examples: &N, LDN, ORN

C Conditional execution of the instruction:
Only when the CR contains the (boolean) state TRUE is the instruction ex-
ecuted
Examples: JMPC, CALC

The negation and the conditional execution can be combined in case of
some operators.
Examples: JMPCN, CALCN

(Introduction of a nesting level:
Example: ADD(, XOR(, GT(
Options for the nesting are listed in the table in the column “(”. Further infor-
mation can be found in section 8.4.3.

Programming language Instruction List (IL)8–8

1070 072 305-104 (03.03) GB

Operator Operand (Explanation Refer to
section

LD ANY Copies the operand value in the working register CR 8.5.1

LDN ANY_BIT Copies the negated operand value in the working register CR

8.5.1

ST ANY Sets the operand value equal to the current result (CR) 8.5.2

STN ANY_BIT Sets the operand value equal to the negated value of the current result CR

8.5.2

S BOOL Sets the boolean operand value to 1 when the CR is 1

R BOOL Sets the boolean operand value to 0 when the CR is 1

AND ANY_BIT (Boolean AND 8.5.3

& ANY_BIT (Boolean AND

8.5.3

ANDN ANY_BIT (Boolean AND, negated

&N ANY_BIT (Boolean AND, negated

OR ANY_BIT (Boolean OR

ORN ANY_BIT (Boolean OR, negated

XOR ANY_BIT (Boolean exclusive OR

XORN ANY_BIT (Boolean exclusive OR, negated

ADD ANY_NUM (Addition 8.5.4

SUB ANY_NUM (Subtraction

8.5.4

MUL ANY_NUM (Multiplication

DIV ANY_NUM (Division

GT * (Greater than 8.5.5

GE * (Greater than equal to

8.5.5

EQ * (Equal to

NE * (Not equal to

LE * (Less than equal to

LT * (Less than

JMP Label Unconditional jump to the label 8.5.6

JMPC Label Jump to the label when CR = 1

8.5.6

JMPCN Label Jump to the label when CR = 0

CAL Instance
name

Unconditional FB call 8.5.7

CALC Instance
name

FB call when CR = 1

CALCN Instance
name

FB call when CR = 0

RET – Unconditional reverse jump 8.5.9

RETC – Reverse jump when CR = 1

8.5.9

RETCN – Reverse jump when CR = 0

) – Closing parenthesis in case of nesting 8.4.3

* ANY_INT, ANY_BIT, ANY_DATE, STRING, TIME

Programming language Instruction List (IL) 8–9

1070 072 305-104 (03.03) GB

8.5.1 Load instructions – LD

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of load instructions

Loading: LD
The value of the specified operand is loaded in the working register CR. The
original contents of the working register are overwritten. The operand is not
changed. The data type of the specified operand establishes the allowed
data type for the following operands in this sequence.

Allowed data types: ANY, refer to section 7.2.3.

Influencing the CR: Create, refer to section 8.3.

Examples:
LD 5 (* Value 5 is loaded *)
LD tod#8:27:00 (* Day time *)
LD VAR_1 (* Contents of a variable *)
LD %I5.7 (* directly shown

 physical address *)

Negated loading: LDN
The negated value (also refer to the beginning of the section 8.5) of the spe-
cified operand is loaded in the working register CR. The original contents of
the working register are overwritten. The operand is not changed. The data
type of the specified operand specifies the allowed data type for the following
operands in this sequence.

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Create, refer to section 8.3.

Example:
LDN 2#01101010 (* !!! Data type ANY_BIT !!!

*)

In the example, the negated value of the operand is loaded. Thus, the CR
contains the value 2#10010101 after the execution of the instruction.

Programming language Instruction List (IL)8–10

1070 072 305-104 (03.03) GB

8.5.2 Assignments – ST, S, R

Assigning: ST
The contents of the working register CR are assigned to the specified ope-
rand. The original value of the operand is overwritten. The data type of the
specified operand must match with the data type of the data element in the
CR. The data type of the CR is established by the data type of the variables
which has a value assigned to it. Further assignments can then be made only
with variables of the same data type. An assignment can be followed by an-
other.

Allowed data types: ANY, refer to section 7.2.3.

Influencing the CR: Leave unchanged, refer to section 8.3.

Examples:
ST VAR_1 (* Assign CR to a variable *)
ST %Q5.7 (* directly shown

 physical address *)

LD tod#8:27:00 (* Load time of day... *)
ST todVar1 (* ...assign 2 variables *)
ST todVar2

Negated assigning: STN
The negated contents (also refer to the beginning of the section 8.5) of the
working register CR is assigned to the specified operand. The original value
of the operand is overwritten. The data type of the specified operand must
match with the data type of the data element in the CR. The data type of the
CR is established by the data type of the variables which has a value assi-
gned to it. Further assignments can then be carried out only with variables of
the same data type. Another assignment “ST” or “STN” can follow an assign-
ment “STN” .

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Leave unchanged, refer to section 8.3.

Example:
LD 2#00111100 (* !! Data type ANY_BIT !! *)
STN VAR_1

In the example, the specified value is assigned to the CR using “LD”. With
“STN”, the negated value 2#11000011 is assigned to the variables “VAR_1”.
The CR however contains the unchanged value 2#00111100.

Set: S
The specified operand is set (TRUE) when the contents of the working regi-
ster CR is equal to “1” (TRUE). The operand remains set until a reset instruc-
tion reverses this state.

When this setting condition is not fulfilled, there is no change in the ope-
rands.

Allowed data type: BOOL, refer to section 7.2.3.

Influencing the CR: Leave unchanged, refer to section 8.3.

Programming language Instruction List (IL) 8–11

1070 072 305-104 (03.03) GB

Examples:
LD %M15.3 (* Load marker bit *)
S %Q7.2 (* Set output *)

In the example, the output 7.2 is set depending upon the state of the marker
15.3.

Resetting: R
The specified operand is reset (FALSE) when the contents of the working
register CR is equal to“1” (TRUE).

When this resetting condition is not fulfilled, there is no change in the ope-
rands.

Allowed data type: BOOL, refer to section 7.2.3.

Influencing the CR: Leave unchanged, refer to section 8.3.

Examples:
LDN %M15.3 (* Load negated marker bit *)
R %Q7.2 (* Reset output *)

In the example, the output 7.2 is set depending upon the negated state of the
marker 15.3.

Example: Bistable elements
With a combination of setting and resetting instructions, the function of a bi-
stable element (flipflop) can be replicated.

The output of a bistable element can be switched by a fulfilled setting condi-
tion to “1” (TRUE) or by a fulfilled resetting condition to “0” (FALSE). The
state remains until the condition for the opposite state is fulfilled. If both
conditions are simultaneously fulfilled, the data element assumes the state,
for which the condition was processed last. So, it is “set dominant” or “reset
dominant”, refer to the examples:

Set dominant flipflop (SR):
LD _ReSet (* Reset variable *)
R _Q1 (* Reset output*)
LD _Set1 (* Set variable *)
S _Q1 (* Set output *)

Reset dominant flipflop (RS):
LD _Set (* Set variable *)
S _Q1 (* Set output *)
LD _ReSet1 (* Reset variable *)
R _Q1 (* Reset output*)

For bistable elements, the standard function blocks “SR” and “RS” are also
available, refer to section 12.2.1.

Programming language Instruction List (IL)8–12

1070 072 305-104 (03.03) GB

8.5.3 Boolean operators AND, &, OR, XOR

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Syntax graph of the logical operators

Boolean AND: AND, &
Boolean (logical) AND of the specified operand value with the contents of the
working register CR. The result is stored in the CR. The operand value is not
changed.

In case of bit patterns (byte or word operands), the individual bits of the spe-
cified operand are linked with the corresponding bits of the CR.

Either the keyword “AND”, or the short form “&” may be used.

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Examples:
LD %I8.2 (* phys. Binary address *)
& %I8.5
ST %Q4.0

Only when at the input 8.2 and 8.5, the state “1” (TRUE) exists, the output 4.0
is similarly set to “1”.

LD 2#10100110 (* Bit pattern *)
AND 2#11110000
ST %QB0

After the AND link of both the bit patterns, the output byte contains the bit
pattern 10100000.

Negated AND: ANDN, &N
In case of binary operation, the contents of the specified operand are nega-
ted (also refer to the beginning of the section 8.5) and linked with the con-
tents of the working register CR with the AND function. The result is stored in
the CR. The operand value is not changed.

In case of bit patterns (byte or word operands), every single bit of the ope-
rand is negated (complement of one).

Either the keyword “ANDN”, or the short form “&N” may be used.

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Programming language Instruction List (IL) 8–13

1070 072 305-104 (03.03) GB

Examples:
LD %I8.2 (* phys. binary address *)
&N %I8.5 (* negated state *)
ST %Q4.2

The state at the input 8.5 is negated and subsequently follows the AND ope-
ration with input 8.2. At the input 8.2, the state “1” (TRUE) and at the input
8.5, the state “0” (FALSE) must exist so that the output 4.2 is set to “1”.

LD 2#10100110 (* Bit pattern *)
ANDN 2#11110000 (* Bit pattern is negated *)
ST %QB4

Negation of the second bit pattern gives rise to 2#00001111. This bit pattern
is linked to the first one in a binary form. The output byte contains the bit pat-
tern 00000110.

Boolean OR: OR
Boolean (logical) OR of the specified operand value with the contents of the
working register CR. The result is stored in the CR. The operand value is not
changed.

In case of bit patterns (byte or word operands), the corresponding bits of
every related operand are linked.

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Examples:
LD %I8.2 (* phys. binary address *)
OR %I8.5
ST %Q4.1

When the state at the input 8.2 or 8.5 is set to “1” (TRUE) – even at both the
inputs simultaneously, the output 4.1 is set to “1”.

LD 2#10100110 (* Bit pattern *)
OR 2#11110000
ST %QB8

After the OR link of both the bit patterns, the output byte contains the bit pat-
tern 11110110.

Negated OR: ORN
In case of binary operation, the contents of the specified operand are nega-
ted (also refer to the beginning of the section 8.5) and linked with the con-
tents of the working register CR with the OR function. The result is stored in
the CR. The operand value is not changed.

In case of bit patterns (byte or word operands), every single bit of the ope-
rand is negated (complement of one).

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Programming language Instruction List (IL)8–14

1070 072 305-104 (03.03) GB

Examples:
LDN %I8.2 (* phys. address negated *)
ORN %I8.5 (* likewise negated *)
ST %Q4.3

With the instruction LDN, the input state at 8.2 is set in the CR after negation.
The state at the input 8.5, is similarly negated by the operator ORN. Subse-
quently follows the OR link.

LD 2#10100110 (* Bit pattern *)
ORN 2#11110000 (* Bit pattern is negated *)
ST %QB12

Negation of the second bit pattern gives rise to 2#00001111. This bit pattern
is linked to the first one in a binary form. The output byte contains the bit pat-
tern 10101111.

Exclusive OR: XOR
Boolean (logical) exclusive OR of the contents of the specified operand with
the contents of the working register CR. Exclusive OR means that both the
operands, which are to be linked, must be different so that the result assu-
mes the state “1” (TRUE). The result is stored in the working register. The
operand value is not changed.

In case of bit patterns (byte or word operands), the corresponding bits of
every related operand are linked.

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Examples:
LD %I8.2 (* phys. binary address *)
XOR %I8.5
ST %Q4.4

The following table shows the result at the output 4.4 dependent upon the
inputs:

%I8.2 FALSE TRUE FALSE TRUE

%I8.5 FALSE FALSE TRUE TRUE

%Q4.4 FALSE TRUE TRUE FALSE

LD 2#10100110 (* Bit pattern *)
XOR 2#11110000
ST %QB16

After the XOR link of both the bit patterns, the output byte contains the bit
pattern 01010110.

Negated XOR: XORN
In case of binary links, the contents of the specified operand are negated
(also refer to the beginning of the section 8.5) and linked with the contents of
the working register CR with the XOR function. The result is stored in the CR.
The operand value is not changed.

Programming language Instruction List (IL) 8–15

1070 072 305-104 (03.03) GB

In case of bit patterns (byte or word operands), every single bit of the ope-
rand is negated (complement to one).

Allowed data types: ANY_BIT, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Examples:
LD %I8.2 (* phys. binary address *)
XORN %I8.5
ST %Q4.5

The state at the input 8.5 is negated and subsequently follows the XOR link
with input 8.2. The following table shows the result at the output 4.5 depen-
dent upon the inputs (before the negation):

%I8.2 FALSE TRUE FALSE TRUE

%I8.5 FALSE FALSE TRUE TRUE

%Q4.5 TRUE FALSE FALSE TRUE

LD 2#10100110 (* Bit pattern *)
XORN 2#11110000
ST %QB20

Negation of the second bit pattern gives rise to 2#00001111. This bit pattern
is linked to the first one in a binary form. The output byte contains the bit pat-
tern 10101001.

8.5.4 Arithmetic operators ADD, SUB, MUL, DIV

For arithmetical (mathematical) calculations, there are four types of basic
calculations available in IL i.e. addition, subtraction, multiplication and divi-
sion.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of the arithmetical operators

Addition: ADD
The specified operand value is added to the contents of the working register
CR and the result is stored in the CR. The operand value is not changed.

On the operator ADD, the opening parenthesis for the introduction of a ne-
sting level can be used, refer to section 8.4.3.

Programming language Instruction List (IL)8–16

1070 072 305-104 (03.03) GB

. The function ADD for multiple addition of numeric operands and for
the addition of time values and addresses is described in section 12.1.

Allowed data types: ANY_NUM, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Examples:
LD 24 (* Unsigned *)
ADD 10
ST uiVar

“uiVar” and the CR contains the value “34” after addition.

LD 78.25 (* Floating point number *)
ADD –1.5 (* Unsigned *)
ADD 6.75
ST rVar

“rVar” and the CR contains the value “83.5” after addition. If “rVar” is an inte-
ger variable (ANY_INT), it would contain the value “83”. The after decimal
positions are thus cut off.

Subtraction: SUB
The specified operand value (subtrahend) is subtracted from the contents of
the working register CR (minuend) and the result is stored in the CR. The
operand values are not changed.

On the operator SUB, the opening parenthesis for the introduction of a ne-
sting level can be used, refer to section 8.4.3.

. The function SUB for multiple subtraction of numeric operands and for
the subtraction of time values and address is described in section 12.1.

Allowed data types: ANY_NUM, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Example:
LD 24
SUB 10
ST uiVar

“uiVar” and the CR contains the value “14” after subtraction.

Multiplication: MUL
The specified operand value is multiplied with the contents of the working
register CR and the result is stored in the CR. The operand value is not chan-
ged.

On the operator MUL, the opening parenthesis for the introduction of a ne-
sting level can be used, refer to section 8.4.3.

Programming language Instruction List (IL) 8–17

1070 072 305-104 (03.03) GB

. The function MUL for multiple multiplication of numeric operands and
for the multiplication of time values and address is described in sec-
tion 12.1.

Allowed data types: ANY_NUM, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Example:
LD 24 (* Unsigned *)
MUL 20
ST uiVar

“uiVar” and the CR contains the value “480” after multiplication . The variable
“uiVar” may not be of data type “SINT” or “USINT” as this cannot store the
result. Instead, a data type with larger data width must be selected, e.g.
“UINT”.

Division: DIV
The contents of the working register CR (dividend) are divided by the value
of the specified operands (divisor) and the result (quotient) is stored in the
CR. The operand value is not changed.

On the operator DIV, the opening parenthesis for the introduction of a ne-
sting level can be used, refer to section 8.4.3.

. The function DIV for multiple division of numeric operands and for the
division of time values and address is described in section 12.1.

Allowed data types: ANY_NUM, refer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Example:
LD 24 (* Unsigned *)
DIV 10
ST iVar

If “iVar” is a real variable (ANY_REAL), “iVar” and the CR contain after the
division a value of ” 2.4”. In case of an interger variable (ANY_INT), the value
would be “2”. The after decimal positions are thus cut off.

Programming language Instruction List (IL)8–18

1070 072 305-104 (03.03) GB

8.5.5 Comparison operators– GT, GE, EQ, LE, LT, NE

With the help of boolean checks of operators, i.e. checking whether a condi-
tion is met (TRUE) or not (FALSE), the program execution can be controlled.
The comparison operators are e.g. combined with jump or call operators, re-
fer to sections 8.5.6 and 8.5.7.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Syntax graph of the comparison operators

The following comparison operators are available:

GT greater than
GE greater than or equal
EQ equal to
LE less than or equal
LT less than
NE not equal

The specified operand value is compared with the contents of the working
register CR. The operand value was subtracted from the value of the working
register. The satisfied condition is indicated through the boolean state TRUE
in the CR; FALSE signals that the condition was not fulfilled. The original
contents of the CR are overwritten. The operand value is not changed.

During the comparison, a type conversion of the working register CR takes
place: After the comparison, the CR is of the data type BOOL.

The boolean result of a comparison operation can be used as condition for a
function block-call, a jump to a label, other logical linking operations or for a
reverse jump out of a POU to the higher-level structure level.

Allowed data types: ANY_INT, ANY_BIT, ANY_DATE, STRING, TIME, re-
fer to section 7.2.3.

Influencing the CR: Further processing, refer to section 8.3.

Example:
M1: LD iResult

ADD iOperand1
ST iResult (* calculation result *)
LE 100 (* Comparison CR <= 100... *)
JMPC M1 (* ...then jump to M1 *)
JMP M3 (* ...otherwise jump to M3 *)

Programming language Instruction List (IL) 8–19

1070 072 305-104 (03.03) GB

The result of the addition is saved in the variables “iResult” and in the CR. If
the operands of the addition and of result are e.g. of the data type “INT”, the
CR is also assigned the data type “INT”. The comparison operation following
this, saves the boolean comparison result “TRUE” or “FALSE” in the CR. The
data type of the CR changes to “BOOL”. Due to this, the subsequent jump
instructions “JMPC” and “JMP” are in the position to evaluate the boolean
value in the CR.

8.5.6 Jump operators – JMP, JMPC, JMPCN

With the help of jump statements, one can branch to a jump destination. The
jump destination must always have a sequence beginning marked by the la-
bel (refer to section 8.4.2).

After a jump, the state of the working register CR is undefined and must be
redefined with a load instruction.

A jump is possible only within a POU.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of program jumps

Unconditional jump: JMP
The program is set to the position which is specified as the jump location.

Allowed data types: Non-relevant.

Influencing the CR: Undefined, refer to section 8.3.

Example:
M1: LD iANY

...
JMP M3 (* unconditional jump *)

M2: ...

M3: LD xANY
...
JMP M3 (* unconditional jump *)

The unconditional jump to the label “M3” has the effect that to start with, the
instruction rows between the jump statement “JMP” and the label “M3” are
not executed. With another jump statement to label “M2”, the above-mentio-
ned instruction rows are executed at a later point of time.

Programming language Instruction List (IL)8–20

1070 072 305-104 (03.03) GB

Conditional jumps: JMPC, JMPCN
Conditional jump depending upon the boolean contents of the working regi-
ster CR.

JMPC: Jump when TRUE
If the CR contains the value TRUE, the jump is executed and the program is
continued further from the jump destination.

If the CR contains the value FALSE, no jump is executed. The program is
continued further with the statement following the jump instruction.

JMPCN: Jump when FALSE
If the CR contains the value FALSE, the jump is executed and the program
proceeds further from the jump destination.

If the CR contains the value TRUE, no jump is executed. The program is con-
tinued further with the statement following the jump instruction.

Allowed data types: Non-relevant.

Influencing the CR: Undefined in case the jump is executed. Unchanged in
case the processing continues with the next statement. Also refer to section
8.3.

Example:
M1: LD %Q3.5

JMPC M1

The example evaluates the state at the (physical) output 3.5. If there is a si-
gnal available at the output, a jump to “M1” takes place. Only when no signal
is available at “Q3.5”, the program processing is continued after the jump
statement.
CAUTION! The program processing is not continued through the loop. If the
signal lies for a period longer than the maximum program cycle time at
“Q3.5”, the controller switches into the STOP mode.

8.5.7 Call of function blocks – CAL, CALC, CALCN

As in the case of jump statements, one can branch to a jump destination. The
jump destination is here the name of the FB instance.

After a FB call , the state of the working register CR is undefined and must be
redefined with a load instruction.

Further information concerning FB calls can be found in the sections 6.5.3
and 6.5.4.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of FB calls

Programming language Instruction List (IL) 8–21

1070 072 305-104 (03.03) GB

Unconditional calls: CAL
The program is continued further in the function block which is specified as
operand. The unconditional call may be programmed only after completion
of an IL sequence and is not allowed within the parenthesis modifiers.

Allowed data types: Non-relevant.

Influencing the CR: Undefined, refer to section 8.3.

The input parameters of the function block can be “given” with the call in the
parenthesis – by separating the parameters with commas. The actual para-
meters are assigned using “:=” to the formal parameters.

The second method for the parameter transfer is the initialization before the
call by a combination of load (LD) and assignment statements (ST). In case
of these methods, the FB call takes place without parenthesis.

Example, method 1:
CAL CTU_1 (RESET:=%IX3.6, PV:=Limit, CU:=_1S2)

Example, method 2:
LD %IX3.6
ST CTU_1.RESET
LDN Limit
ST CTU_1.PV
LD _1S2
ST CTU_1.CU
CAL CTU_1

Conditional call: CALC, CALCN
Conditional FB call depending upon the boolean contents of the working re-
gister CR.

CALC: Call when TRUE
If the CR contains the value TRUE, the as operand specified FB (instance) is
called up, in which the program processing will be continued.

If the CR contains the value FALSE, no call is executed. The program is con-
tinued further with the statement following the call instruction.

CALCN: Call when FALSE
If the CR contains the value FALSE, the as operand specified FB (instance)
is called up, in which the program processing will be continued.

If the CR contains the value TRUE, no call is executed. The program is conti-
nued further with the statement following the call instruction.

Allowed data types: Non-relevant.

Influencing the CR: Undefined in case the call is executed. Unchanged in
case the processing continues with the next statement. Also refer to section
8.3.

Programming language Instruction List (IL)8–22

1070 072 305-104 (03.03) GB

Example:
LD bCounterReset
CALCN CTU_2 (RESET:=%IX3.2, PV:=Limit, CU:=_5S1)

In the example, the FB instance “CTU_2” may only be called up when the
boolean variable “bCounterReset” contains the value “FALSE”.

8.5.8 Call of functions

Allowed data types: Non-relevant.

Influencing the CR: Further processing, refer to section 8.3. The CR is oc-
cupied with the function value in the function.

Unconditional call
Functions are called up without specify an operator. The input parameters
are transferred directly. Due to this, no conditional calls can be implemented.

An option allows to transfer the initial input parameters from the CR of the
earlier executed instruction without further specifications.

Example for the use of the CR for the first parameter in case of a func-
tion call:

LD 2#10010110 (* 1st Param. is loaded
 into the CR *)

SHL 2 (* 2nd Param. in the call *)
ST Links (* Function value in the CR *)

In the example, the function SHL is called up. The first parameter is transfer-
red without assignment but only with the load instruction (LD) – with the help
of the CR. The second parameter is specified directly in the function call. The
function value (return value of the function) is written by the function in the
CR. Thus, the function value can be used directly after the instruction row of
the function call.

Function value
The return value of the function (function value) is written after the function
call in the CR for further processing.

Within the called function, the return value is generated by writing the CR to
the function name.

Example:
ST FUN_Name

Formal parameter
In contrast to the programming language ST, formal parameters may basi-
cally not be specified in the call. Here, the order of the input parameters must
definitely followed.

Further information concerning function calls can be found in the sections
6.5.3 and 6.5.5.

Programming language Instruction List (IL) 8–23

1070 072 305-104 (03.03) GB

Examples
Example 1:

LD szString (* String variable *)
MID 3, 2 (* Function call +

 Parameters *)
ST szNew (* CR = Function value *)

In the example, the standard function “MID” (refer to section 12.1) is called
up. This function requires three input parameters. The first parameter is writ-
ten with the load instruction “LD” in the CR. The other two parameters are
specified – delimited by comma – after the function call. After the function
call, the function value from the CR is assigned to the variable “szNew” using
the instruction “ST”.

Example 2:
MID szString, 3, 2
ST szNew

This variation shows the same function call as in example 1, with the diffe-
rence that here, all three parameters are transferred in the call.

8.5.9 Return jump – RET, RETC, RETCN

The return jump instructions result in a return to the calling POU. With the
return jump to a POU, the calling POU is continued at the interrupted posi-
tion.

After a return jump, the state of the working register CR remains unchanged.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Syntax graph of return jumps

Unconditional return jump: RET
The instruction “RET” results in an unconditional return jump to the calling
POU. In case of functions, the current function value is entered in the CR.

Allowed data types: No operand available.

Influencing the CR:
Return jump out of function block: Leave unchanged.
Return jump out of function: The current function value is stored in the CR.
Also refer to section 8.3.

Example:
LD bError
JMPCN M4
RET (* unconditional return *)

M4:

Programming language Instruction List (IL)8–24

1070 072 305-104 (03.03) GB

The example contains an extract from a function or a function block. If the
variable “bError” contains the boolean value “FALSE”, the program proces-
sing is continued from the label “M4”. In case “bError” contains the value
“TRUE”, the return jump to the calling POU follows. The same example can
also be realized differently with the help of a conditional return jump, refer to
the example below.

Conditional return jump:
RETC, RETCN

Conditional return jump depending upon the boolean contents of the wor-
king register CR.

RETC: Return when TRUE
If the CR contains the value TRUE, the return jump to the higher-level POU
follows.

If the CR contains the value FALSE, no return jump is executed. The pro-
gram is continued further with the statement following the return jump in-
struction.

RETCN: Return when FALSE
If the CR contains the value FALSE, the return jump to the higher-level POU
follows.

If the CR contains the value TRUE, no return jump is executed. The program
is continued further with the statement following the reverse jump instruc-
tion.

Allowed data types: No operand available.

Influencing the CR: Leave unchanged, refer to section 8.3.
In comparison to the unconditional return jump “RET”, in case of a conditio-
nal returns of a function, the CR is not overwritten by the function value!

Example:
LD bError
RETC

In the example, the boolean variable “bError” is evaluated. In case “bError”
contains the value “TRUE” , the return to the calling POU follows. Should the
variable “bError” contain the boolean value “FALSE”, the program proces-
sing is continued after the statement “RETC”.

Programming language Structured Text (ST) 9–1

1070 072 305-104 (03.03) GB

9 Programming language Structured Text (ST)

The Structured Text (ST) is a textual higher programming language. In com-
parison to machine-like IL, ST is a programming language, in which exten-
sive language constructs allow a very compact formulation of the
programming task.

An ST program consists of instructions. In an instruction values are compu-
ted and assigned, modules are called up and leaved, and command flow is
controlled.

ST offers the advantage of implementing an open program structure. The
disadvantage of this language lies in its lower efficiency. The programs are
slower and longer.

Please pay attention to the programming examples concerning the ST in the
WinSPS help, chapter “Introducing WinSPS”.

9.1 Expressions, operands and operators

As already mentioned, an ST program consists of instructions. An instruction
contains an expression (partial instruction), using which a result is built.
Here, complex links can be generated with the help of operands and opera-
tors.

Operands
All possible operands are listed in the following table:

Operand Examples

Literals
refer to section 7.1.3

15
’ABC’
t#5m_15s

Variables
refer to section 7.3

Valve_1
aMeasValue[1,0]
Person.szName

Function calls
refer to section 6.5.5

LEN (CONCAT (’to’, ’ gether’))

Operators
The operands can be linked to each other through operators. The following
table shows all operators of the programming language ST. The precedence
during the processing is shown in the decreasing order of precedence; i.e.
the “Parenthesis” have the highestpriority. If an expression has more than
one operator, the order of precedence is to be taken into account. Operators
with higher priority are processed before the operators with lower priority. In
case of equal priority, the processing takes place from left to right.

Programming language Structured Text (ST)9–2

1070 072 305-104 (03.03) GB

Operator Explanation Example

() Parenthesis (2+3)*(4+4)
Result: 40
Without parenthesis: 18

Function call CONCAT(’TO’,’GETHER’)
Result: ’TOGETHER’

** Exponentiation 2**3
Result: 8

– Negation –12
Result: –12

NOT Complement NOT FALSE
Result: TRUE

* Multiplication 3 * 4
Result: 12

/ Division 12 / 6
Result: 2

MOD Modulo
(Remainder of a division)

23 MOD 6
Result: 5

+ Addition 3 + 5
Result: 8

– Subtraction 5 – 7
Result: –2

<
>
<=
>=

Comparison: Less than
Greater than
Less than or equal
Greater than or equal

45 > 66
Result: FALSE

= Equality T#34h = T#6d7h
Result: FALSE

<> Inequality 10 <> 16#A
Result: FALSE

&
AND

Boolean AND TRUE AND FALSE
Result: FALSE

XOR Boolean Exclusive OR TRUE XOR FALSE
Result: TRUE

OR Boolean OR TRUE OR FALSE
Result: TRUE

Function calls as operators
Calls of function blocks represent a closed instruction, refer to section 9.2. In
contrast to that, functions (FUN) are called up within a partial instruction and
are counted among the expressions. Further information and examples con-
cerning function calls can be found in section 6.5.5.

Programming language Structured Text (ST) 9–3

1070 072 305-104 (03.03) GB

9.2 Instructions

An ST program consists of instructions. Instructions are terminated with the
semicolon. As a result, even multiple instructions may be given in a row. In
comparison to IL, the end of line (line break) does not separate the instruc-
tions. It is interpreted as a space character.

All ST instructions are listed in the following table:

Explanation Key word Examples Refer to
section

Assignment := a := 5; 9.2.1

Calling of an
function block

FBName
 (Para1:=5,
 Para_n := 10);

9.2.2

Return jump RETURN RETURN; 9.2.3

Selection IF IF a<b THEN
c:=1;

 ELSIF a=b THEN
 c:=2;
 ELSE
 c:=3;
END_IF;

9.2.5

Multi-selection CASE CASE n OF
2: p:=4;
3: p:=p+3;
5..10: p:=100–p(p–q);
ELSE p:= MAX(a,b);

END_CASE;

9.2.6

Iterations FOR FOR a:=1 TO 100 BY 2
DO

b[a/2]:=a;
END_FOR;

9.2.7

WHILE WHILE y > 1 DO
y:= y–2;

END_WHILE;

9.2.8

REPEAT REPEAT
a:=a+b;

UNTIL a<100
END_REPEAT;

9.2.9

End of loop EXIT EXIT; 9.2.11

Empty statement ; ;;

Structured programming
In ST, there is no GOTO statement. As a result, structured programming gets
enforced. Jumps can be reproduced through appropriate IF or CASE state-
ments.

The option of allowing multiple statements in a row leads to confusing pro-
gram structure. Such programs, which do not comply with structured pro-
gramming, are also termed as “Spaghetti Code”. Instead e.g. in case of
nesting , it is possible to use indenting so that the processing structure can as
a result be quickly recognized. An example for this indenting is quite di-
stinctly illustrated in table above in the example of the IF statement.

Programming language Structured Text (ST)9–4

1070 072 305-104 (03.03) GB

9.2.1 Assignment

An assignment transfers the result of the evaluation of an expression to a
variable. The assignment copies the value existing on the right side of the
equivalence sign ’:=’ into the variable on the left side.

In the assignments, single element as well as multiple element variables can
be used.

Examples:
(* Assignment: Variable a is assigned the value 5 *)
a := 5;

(* Two assignments in one row *)
b[1] := a**2; d := b[2];

(* Assignment with a function call *)
d := REAL_TO_INT (c);

. The variable on the left side must be of the same type as the currently
assigned value.

. In case of an assignment, do not forget to enter a colon before the
equivalence sign “:=”. A standalone equivalence sign “=” is used for
comparison operations.

9.2.2 Call of an function block

In ST, a function block (FB) is called up using its name and its formal parame-
ters existing in the parenthesis. In this case, the sequence is not significant.
The value of the actual parameters is assigned to the formal parameters.
Output parameters can similarly be assigned to the formal parameters in the
call. Input and output parameters are then separated from each other with
the character ”|”. The assignment can take place directly in the call through
corresponding statements.

While calling up a function block, not necessary parameters may be left out.

. VAR_IN_OUT parameters may not be left out. During compilation,
WinSPS generates an error message in case VAR_IN_OUT parameters
are left out.

Detailed information concerning the call up interface of FBs is discussed in
section 6.5.4.

Example for the assignment of input parameters in the call:
FB_Instancename (Para1 := 27, Para2 := uiVar);

Programming language Structured Text (ST) 9–5

1070 072 305-104 (03.03) GB

Example for the assignment of input parameters before the call:
FB_Instancename.Para1 := 27;
FB_Instancename.Para2 := uiVar;
FB_Instancename ();

Example for the evaluation of an output parameter:
Erg := FB_Instancename.ParaOut;

Example for the assignment of input and output parameters in the call:
FB_Instancename (Para1 := 27, Para2 := uiVar |
 Erg := ParaOut);

9.2.3 Return jump – RETURN

A function or a function block can be leaved with the RETURN statement,
even before completion. In case of functions, the function value must already
be assigned at this point of time. If the function value is not assigned, it gets
the default value of its data type, refer to section 7.2.1.

Example:
IF a > b THEN RETURN;
END_IF;

9.2.4 Conditional execution

Often there is a need to make the execution of specific statements depen-
dent on a condition. With a conditional expression the program flow can be
controlled. There are two groups of control structures:

D Selections:
Selection (IF) and Multi-selection (CASE)

D Iterations:
FOR, WHILE and REPEAT loop, refer to section 9.2.10.

Selection statements are used when the statements cannot be executed in
all events, instead, they are executed dependent upon one or more condi-
tions.

Iterations or loops allow computing of specific program steps multiple times.
In comparison to jumps (GOTO), loops are useful for the structured pro-
gramming.

Programming language Structured Text (ST)9–6

1070 072 305-104 (03.03) GB

9.2.5 Selection, – IF

With the IF statement block, the program flow can be controlled depending
upon an expression that can be evaluated. The program flow is dependent
upon the boolean result of this expression.

D Conditional expression as well as further nesting with ELSE and ELSEIF
are indicated within the keywords IF and END_IF.

D If the expression given after the IF is TRUE, the statements in the
THENpart are executed.

D If the expression is not true (FALSE), the statements in the ELSE part are
executed or the expression after the associated ELSIF is checked.

D If no ELSE or ELSIF part is available, or in case, no condition is fulfilled,
the processing is continued after END_IF.

Syntax
The following table shows the syntax and the nesting option of the bran-
ching:

IF Expression THEN
 Statement_block;

Execution of statement blocks only when
the condition is fulfilled.

ELSIF Expression
THEN
 Statement_block;

Execution only when the expressions are
not fulfilled and the ELSIF expression is
fulfilled. This partial statement can be
omitted or can be repeated as many times
as may be necessary.

ELSE
 Statement_block;

Execution only when all previous
expressions are not fulfilled. The ELSE
part is optional.

END_IF; Closing the IF statement.

. Kindly keep in mind that every statement and the keyword END_IF are
to be followed by a semicolon as shown in the table above.

Example:
IF a < b THEN
 c := 1;
 ELSIF a = b THEN
 c := 2;
 ELSE
 c := 3;
END_IF;

In the example, it is checked whether “a” is less than “b”. If this is the case
(condition = TRUE), the statement “c := 1” is then executed. Afterwards, the
program programming is continued after END_IF.
However, if “a” is not less than “b” (condition = FALSE), the next condition
after ELSIF is checked. If “a” is equal to “b”, the statement “c := 2” is execu-
ted. Afterwards, the program programming is continued after END_IF.
Only when “a < b” and “a = b” are not fulfilled, the statement after ELSE “c :=
3” is executed. This is the case when “a > b”.

Programming language Structured Text (ST) 9–7

1070 072 305-104 (03.03) GB

9.2.6 Multi-selection– CASE

With the nesting of an IF ELSE statement, the number of options can practi-
cally be increased to any extent. The disadvantage in that case is that the
clarity decreases with increasing nesting depth.

The CASE statement is a multi-selection.

D Condition and statement blocks are specified within the keywords CASE
and END_CASE.

D For condition, an integer (signed) variable, which is compared in the
CASE statement blocks, refer to syntax: “case_value :”.

D The evaluation of the expression is started with the keyword OF.
D Depending upon the condition expression, the assignments associated

with this value are executed.
D Subsequently, the program control switches to the first statement after

END_CASE.
D Optionally before the end, an additional statement block with the keyword

ELSE can be realized. This is processed only when no branching condi-
tion is fulfilled.

D A CASE statement block can be processed also for multiple values of the
condition variables. The individual values are separated from each other
by comma, refer to the example below: “5, 9 :”.

D Also an integer range can be specified. In this case, the upper limit is se-
parated from the lower limit by two dots, refer to the example below:
“8..10 :”.

Syntax
CASE Expression OF
 case_value : Statement block;
 ELSE statement block;
END_CASE;

. Kindly keep in mind that every statement and the keyword END_CASE
are to be followed by a semicolon. Every CASE value or range of values
is separated by a colon “:” from the statement block.

Programming language Structured Text (ST)9–8

1070 072 305-104 (03.03) GB

Example:
CASE a OF
 1 : b := 1;
 2 : b := 2;
 5,9 : b := 3;
 8..10 : b := 4;
 ELSE b := 0;
END_CASE;

In the example, the variable “a” is checked as a conditional expression. De-
pending upon the contents of these variables, “b” is assigned the following
value:

a 1 2 5 9 8 10 else

b 1 2 3 3 4 4 0

In the shown example, the CASE value “9” appears in two statement blocks
“5,9” and “8..10”. A CASE selection is processed from top to bottom. As soon
as a statement block is processed due to matching of the condition, the follo-
wing conditions are not checked any more, and the program control jumps to
the END_CASE statement. In case “a” has the value 9, the statement “b := 3”
is executed. The statement “b := 4” is not executed, although even here the
condition could be fulfilled.

. Therefore, take care that the same CASE values do not appear in dife-
rent statement blocks.

9.2.7 FOR loop

Iteration statements or loops allow execution of specific program steps mul-
tiple times. The programming language ST has three types of loops FOR,
WHILE and REPEAT.

The FOR loop is also termed as counting loop.

D The FOR loop is delimited by the keywords FOR and END_FOR.
D The FOR loop allows a specific number of repetitions by using an integer

control variable (running index).
D The control variable is set at an initial value and after completion of

every loop, it is increased by a specific increment value or decreased in
case of a negative value.

D The break condition is specified through an end value , which the control
variable must run over by increasing or decreasing.

D The specification of the increment value “BY 1” is optional. The standard
value is 1.

D Loops can be prematurely terminated with the EXIT statement, refer to
9.2.11.

. The values for initial value, end value, running index and increment va-
lue must not be changed within the FOR loop (e.g. by assignment).
Otherwise, errors will occur.

Programming language Structured Text (ST) 9–9

1070 072 305-104 (03.03) GB

Syntax

FOR Control_variable := Initial_value TO End_value BY Increment DO
 Statement_block;
END_FOR;

Example 1:
FOR i := 0 TO 100 BY 2 DO (* increment value = 2 *)
 Field[i] := 10 * i;
END_FOR;

In the first example, the control variable “i” is set to the initial value 0. End
value is 100, the incremental is 2. With this, after each completion of the loop
“i” is increased by 2. Moreover, “i” is used within the loop in order to initialize
the array “Field”. The following enumeration shows the contents of the array
element for the first 4 and the last run:

Passage: 1 2 3 4 51

i := 0 i := 2 i := 4 i := 6 i := 100

Field[0] := 0 Field[2] := 20 Field[4] := 40 Field[6] := 60 Field[98] := 1000

When the control variable “i” reaches the value 100,the loop is run through
for the last time. However, the header of the loop is subsequently evaluated
once more and “i” is set to the value 102, but with this, the end value is cros-
sed over and subsequently the program control jumps to the loop end.

Example 2:
FOR k := –20 TO 0 DO (* increment value = 1 *)
 x := 20 + k;
 Field[x] := k;
END_FOR;

In this FOR loop, the initial value is a negative integer. Since no increment
value is specified, the standard value 1 is used. The loop is executed 21 ti-
mes.

Example 3:
FOR j := 50 TO 1 BY –1 DO (* decremental *)
 Field[j] := j MOD 5;
END_FOR;

In this example, a negative increment value is selected (decrement value).
The control variable is as a result counted backwards. In case of decrement
values, the initial value must be greater than the end value.

An example for the initialization of a multidimensional array is shown in sec-
tion 7.3.6 with the help of a FOR loop.

Programming language Structured Text (ST)9–10

1070 072 305-104 (03.03) GB

9.2.8 WHILE loop

In case of the WHILE loop, a boolean expression is evaluated.

D The loop is delimited by the keywords WHILE and END_WHILE.
D So long as the evaluation of the expression produces TRUE, the state-

ments in the loop are executed.
D As soon as the expression produces FALSE , the program processing

continues after the loop.
D The statement block begins after the keyword DO and ends with

END_WHILE.
D Since the expression in the header of the loop is checked, a deflecting

loop can be formed i.e. by appropriate formulation of the condition, it can
be achieved that the statements in the loop not executed even a single
time, refer to section 9.2.10.

D Loops can be prematurely terminated with the EXIT statement, refer to
section 9.2.11.

Syntax
WHILE Expression DO
 Statement_block;
END_WHILE;

On translation, the syntax means: So long as the expression is satisfied, re-
peat the statement block.

Example:
i := 1;
WHILE i < 10 DO (* so long as i is less than 10,
 repeat *)
 Field[i] := 10 * i;
 i := i + 2;
END_WHILE;

So long as the contents of the variable “i” are less than 10, the loop is execu-
ted. Take care that the value of “i” is increased within the loop so that no end-
less loop exists. The loop in the example is executed 5 times.

9.2.9 REPEAT loop

Even in case of the REPEAT loop, a boolean expression is evaluated.

D The loop is enclosed by the keywords REPEAT and END_REPEAT .
D The evaluation of the break condition takes place at the end of the state-

ment block so that the loop is executed at least once (non–deflecting,
refer to section 9.2.10).

D The expression for the break condition is set directly before END_RE-
PEATand started by the keyword UNTIL .

D So long as the evaluation of the expression produces FALSE , the state-
ments in the loop are executed.

D As soon as the expression produces TRUE , the program processing
continues after the loop.

Programming language Structured Text (ST) 9–11

1070 072 305-104 (03.03) GB

D The statement block begins after the keyword REPEAT and ends with
UNTIL.

D Loops can be prematurely terminated with the EXIT statement, refer to
section 9.2.11.

Syntax
REPEAT
 Statement_block;
UNTIL Expression
END_REPEAT;

On translation, the syntax means: Repeat the statement block till the expres-
sion is true.

Example:
i := 1;
REPEAT
 Field[i] := 10 * i;
 i := i + 2;
UNTIL i > 10 (* repeat till i is larger than 10 *)
END_REPEAT;

The loop is executed till the contents of the variable “i” become larger than
10. Take care that the value of “i” is increased within the loop so that no end-
less loop exists. The loop in the example is executed 5 times.

9.2.10 Deflecting and non-deflecting loops

Using the WHILE or FOR loops – through appropriate formulation of the loop
condition – the processing of the statements within the loop can be deflec-
ted. i.e. the loop can be skipped.

The statements of the REPEAT loop however are in any case executed at
least once (non–deflecting), independent of whether the condition is fulfilled
or not.

The following image shows the different behavior with the example of the
WHILE and REPEAT loops.

Programming language Structured Text (ST)9–12

1070 072 305-104 (03.03) GB

Condition = TRUE ?

Statement_1
Statement_2;
...
Statement_n

WHILE

Y N

Condition = TRUE ?

Statement_1
Statement_2;
...
Statement_n

REPEAT

YN

Control flow of the deflecting loop Control flow of the non deflecting loop

9.2.11 Premature loop end – EXIT

With the keyword EXIT, a loop can be exited prematurely. The program pro-
cessing is continued after the loop. In case of nested loops, only the inner-
most repetitive statement is exited.

Example:

FOR i := 2 TO 20 BY 2
 FOR j := 0 TO 9
 IF bError THEN EXIT; END_IF; (* condition for exiting the inner loop *)
 Array_2[i,j] := i / 2 + j;
 END_FOR;
 Array_1[i] := i * 5; (* continuation after EXIT break *)
END_FOR;

Check load and test program 10–1

1070 072 305-104 (03.03) GB

10 Check load and test program

What distinguishes the modules (POU) of the IEC 61131-3 from most of the
classical programming languages is that they cannot be loaded directly. Af-
ter the entry of a program, the following processing steps must be followed:

D Compile module = Translate into program code
D Link all modules = Link into an integrated program
D Afterwards, the program is loaded in the controller

The processing steps can be carried out independent of each other. In order
to accelerate the loading process, after each program change, WinSPS
identifies which modules are to be compiled and which are not to be compi-
led.

Program tracking and data observation in the WinSPS Monitor are useful for
commissioning and error detection, refer to section 10.5.

10.1 Check / compile module

This function allows checking of an individual module and must be executed
after entering all the rows of a POU and after every change.

Since a POU forms a closed unit in itself, the compiler can translate this inde-
pendent of other program parts into a program code that can be run (Compi-
lation). Thus, all modules can be converted into the program code gradually.

This allows a step by step program development. Partial programs can be
developed and tested independently.

In the POU, entire call interface data is known with the declaration in
VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT and VAR_EXTERNAL. As a re-
sult, all modules can be subsequently linked quickly into an integrated pro-
gram.

WinSPS call
Menu File " Check / Compile Module
Keyboard shortcut <Ctrl> + <Alt> + <C>
Tool bar

Compiler messages
In the IEC editor, the lower window area is used for displaying errors after
testing, refer to section 5.3.

. Only modules, which are compiled error-free, can be loaded in the con-
troller.

Check load and test program10–2

1070 072 305-104 (03.03) GB

10.2 Link all modules – Create new project

All modules are linked into an entire program. The “linker” identifies from the
call structure all those modules (POU), which belong to a project. Therefore,
POU and file names may not appear more than once in a project.

Example:
File name: MODULE.IL POU Name: Module_1
File name: MODULE.ST POU Name: Module_2

Though the POU names of both the modules in this example are different,
yet the filenames within a project may not be identical; not even when they
are used for different programming languages as shown here.

WinSPS call
Menu File " Create new project
Keyboard shortcut <Ctrl> + <Alt> + <G>

Executable program files
Before executing the linker function, all modules are compiled automatically.
Subsequently, executable program files (FC) are generated from the modu-
les (POU) in the ASCII format. For the data of a POU, modules are genera-
ted. The names of this program and data modules are independent of the
project specifications in the symbol file, refer to section 10.3.

. In case calls of IEC modules out of the classical programming langua-
ges are to be realized, the calls must be made before the generation,
also refer to section 11.2.

Identification of the main program
In the symbol file, the module for the main program must be entered at the
position for “OM1”. Here, differentiation is made between the pure program-
ming as per IEC 61131-3 and the mixed programming with the classical pro-
gram parts:

D Pure IEC programming:
The file name of the PROGRAM POU is entered by WinSPS automati-
cally at the position of the OM1. If this entry is missing, the entry can be
made manually, e.g..

OM1,R IEC_PROG ; Cyclic program processing

D Mixed programming
The file name for the organization module OM1 must in any event be ent-
ered by hand in the symbol file, e.g.

OM1,R OM1 ; Cyclic program processing

Check load and test program 10–3

1070 072 305-104 (03.03) GB

Linker messages
Error messages are mostly attributed to the inconsistencies of the interfa-
ces, global and external data or to the crossing of the physical address area.

Error messages are outputted should errors be detected during compilation
or linking. Using the button “Go to”, one can jump to the error position within
the module.

Compiler error during “Create new project”

For a module, an error message appears in the lower editor window. Rows
and character position can however be uniquely identified and indicated by
the linker only in exceptional cases.

Error message of the linker (Create new project)

Check load and test program10–4

1070 072 305-104 (03.03) GB

10.3 Project specifications in the symbol file

With the creation of a project are the ASCII rows of the IEC files converted
into executable control instructions and set into the program modules. Data
modules are generated, in which all variables are stored. Various necessary
symbols are entered in the symbol file. The following modules are generated
by WinSPS automatically:

D Program files Name.PXO, where the name corresponds to the file name
of the IL or ST file

D Data module IM512.PXD to IM1023.PXD, as well as IM0.PXD

IM0.PXD is generated only in case of pure IEC programming – without clas-
sical program parts – for the data of the PROGRAM POU.

. The automatic generation of data modules refers to WinSPS version
3.1 and lower. In future versions of the WinSPS, no data modules are
reserved and set up.

Moreover, the following symbolic identifiers are given in the symbol file:

D Symbols FC512 to FC1023
D Symbols DM512 to DM1023, as well as DM0

The numbering is control dependent and can be adjusted in the symbol file
depending upon the application. Two areas are reserved there for the auto-
matically generated symbols, refer to the example given below. The number
starts with the number after “Start section” and ends with “End section”. In
the symbol file, the limits can be adjusted by changing these numbers when
needed. As far as possible, this must take place before the first compilation
or linking of the project.

In the data module area, not only symbols but the names for automatically
generated data modules IMx.PXD are adjusted. The numbering for DM0
(IM0.PXD) cannot be changed.

. WinSPS generates symbol names and the associated files only for free
numbers within the specified area.
If a module generated by the user already exists in this area, WinSPS
does not change the entry and the module, instead, continues with the
automatic generation with the next free number.

Example
; *** BEGIN ST program module ***
; In this area only the following values are allowed
...
; Start section = 512
; End section = 1023

; *** BEGIN ST data module ***
; In this area only the following values are allowed
...
; Start section = 512
; End section = 1023

Check load and test program 10–5

1070 072 305-104 (03.03) GB

Identification of the main program
Moreover, in the symbol file the module for the main program must be ent-
ered at the position for “OM1”, refer to section 10.2.

10.4 Load program and modules

All modules are loaded in the controller. The loading of partial programs or
the post–loading of individual modules is not possible. Always the complete
program is loaded.

In case of mixed programming with classical program parts, individual non-
IEC modules can also be post–loaded.

Only error free compiled and linked modules are loaded. In case modules
are not compiled and linked free of errors (regenerate project), the compiler
or linker function fo this module is called up automatically before loading.

WinSPS call
Menu Controller " Load
Keyboard shortcu t<Ctrl> + <Alt> + <L>

Check load and test program10–6

1070 072 305-104 (03.03) GB

10.5 Monitor

On pressing the button “IEC”, the monitor for IEC modules is shown.

Since in case of function blocks (FB), every instance has an independent
data and program code area, the different instances can be indicated via a
selection field, refer to the illustration given below: Selection fields “simple
(0)”.

In the declaration tables, the current process values of a variable are shown
in the column “monitor data”.

In future versions of the WinSPS with the accompanying firmware versions
for PCL or CL550, in the instructions section, the current process values
shall be shown fitting in the current instruction row.

The dividing line between the instructions and the actual values can be shif-
ted towards left and right in order to adjust the indication field individually.

Monitor detail with the example of the programming language ST

Use of IEC modules in the classical programming languages 11–1

1070 072 305-104 (03.03) GB

11 Use of IEC modules in the classical programming
languages

11.1 Pure IEC programs

The following illustration demonstrates the typical call hierarchy in case of a
pure IEC program.

Call IEC-FB

Call IEC-FUN

Call IEC-FB

PROG

FB

FB

FUN

END_FUNCTION

END_FUNCTION_BLOCK

END_FUNCTION_BLOCK

END_PROGRAM

RETURN

PROG IEC main program
FB IEC function block
FUN IEC function

Pure IEC 61131-3 programming without “classical” modules

Use of IEC modules in the classical programming languages11–2

1070 072 305-104 (03.03) GB

11.2 Mixed programs

In addition to the “pure” IEC programming with the POU types PROG, FB
and FUN, Bosch allows the calling of IEC modules from the “classical” pro-
gramming languages Instruction List (Bosch-IL) and Sequential Function
Chart (SFC).

A few conditions and options exist if the classical programming languages
are mixed with the IEC programming:

D IEC modules (POU) may be called up from a classical OM (Organisation
Module) or FB (Functions Block, Program Module).

D Moreover, IEC modules can be called up in a step action in the program-
ming language SFC or within the PLC instructions for a step, refer to sec-
tion11.3.4.

D Presently, only IEC modules of the type FUNCTION_BLOCK (FB) can be
called up.

D While calling an FB, an instance of the FB is built even in the classical
programming environment. The instance building is managed by the
user with the help of a WinSPS wizard, refer to section 11.3.

D IEC modules cannot call up any “classical” modules.
D IEC modules can call up other IEC modules (FB and FUN).
D In place of the PROGRAM POU, the organization moduleOM1 is used as

the main program.
D The module OM1 must be entered by hand in the symbol file, e.g.

OM1,R OM1 ; Cyclic program processing

D Operands from the symbol file can also be used in the IEC modules, or for
the call interface from a classical to an IEC module.

D Type definitions, which were entered in the global type editor (refer to
5.5), can also be used in the mixed programs, refer to section 11.4.4.

D In order to allow use of physical addresses (inputs, outputs and markers)
in the mixed programming, WinSPS provides a suitable mechanism
using the symbol file, refer to section 11.4.1.

The following illustration demonstrates the possible call hierarchy in a mixed
program. The example illustrates the call to an IEC function block (FB).

Use of IEC modules in the classical programming languages 11–3

1070 072 305-104 (03.03) GB

Call FC

Call IEC-FB

Call FC

OM1 *

FC *

EM

EM

FC *

EM

Call IEC-FUN

FB

FUN

END_FUNCTION_BLOCK END_FUNCTION

OM1 Main program
FC classical FB
FB IEC function block
FUN IEC function

* Modules of the classical programming languages have a grey background

Calling up IEC modules from an “classical” programming language.

Use of IEC modules in the classical programming languages11–4

1070 072 305-104 (03.03) GB

11.3 Function block call

Bosch allows the call to IEC POUs of the type FUNCTION_BLOCK (FB)
from the classical programming languages Instructions List (Bosch-IL) or
within the Sequential Function Chart (SFC) in a step action or the PLC in-
structions for a step, refer to the example in section 11.3.4.

Entries in the symbol file
In place of the PROGRAM POU, the organization module OM1 is used as
main program. This module must be entered by hand in the symbol file, e.g.
OM1,R OM1 ; Cyclic program processing

All other program modules (FC), which are used in the program, must like-
wise be entered by hand in the symbol file. IEC modules (function blocks and
functions) are basically managed by WinSPS automatically and do not have
to be entered by hand in the symbol file.

Instance calls
As in the case of pure IEC programming , here also instances are called up
and not the FB itself . Information concerning the instance of a function block
can be found in section 6.6.

Multiple working steps following one after another are required for the call:

1. The FB to be called up must be created and compiled free of
any errors.

2. In the symbol file, all operands must be declared, which are to
be used as actual parameters of the FB call interface, also refer
to section 11.4 and 6.5.3.

3. The write cursor must be positioned in a free row of the
Bosch-IL module – better in an empty network. At this position,
the FB call is inserted.

4. Using the menu function Edit " Call up parameter list,the
wizard for inserting a POU call is started. Multiple dialog win-
dows appear one after another, refer to section 11.3.1.

With the menu function File " Create new project, all calls are checked
and converted into an executable program (linked).

Use of IEC modules in the classical programming languages 11–5

1070 072 305-104 (03.03) GB

11.3.1 Call parameter list – wizard for FB call

The menu function Edit " Call up parameter list or the key combination
<Ctrl> + <P> opens a dialog window for the selection of library and IEC mo-
dules.

Select block
All classical Bosch function blocks with parameter header as well as the IEC
modules are listed . The modules available for selection are sorted in the al-
phabetical order. The IEC function blocks can be found under the letter “P”
for POU. If no FBs are shown, either none exist or are not compiled free of
any errors.

The module call always takes place unconditionally (CM).

Select the desired FB from the list and press “Next”.

First dialog window of the wizard for function block calls

Use of IEC modules in the classical programming languages11–6

1070 072 305-104 (03.03) GB

Select instance

Here, already existing or new instances can be selected for the FB call.

Since every instance has its independent program code and data range, the
associated program (FC) and data modules (DM) are shown here, also refer
to section 10.3.

If an existing instance is to be called up again, this can be selected from the
list. A new instance is entered in the input field “Instance name”.

Afterwards, press “Next”.

Second dialog window for specifying an instance of the function block

Configure input and output parameters

This dialog window is independent of the call interface of the function block.
All parameters of the FB call interface are indicated. The names of the varia-
bles (formal parameter) and the associated data type of the variable types
VAR_IN, VAR_OUT and VAR_IN_OUT are listed.

In the input field “Actual parameter”, either absolute values or symbolic ope-
rands can be entered.

In case of symbolic operands, these must have already been entered in the
symbol file. In contrast to the pure IEC programming, attention must be paid
to the uppercase/lowercase letters in case of mixed programming. If you for
example enter the symbolic operand “MARKERWORD_8” in the symbol file,
you must use this style “MARKERWORD_8” also inside the IEC modules
and the call interfaces.

Absolute operands are entered in the classical style, e.g. Q2.0.

Use of IEC modules in the classical programming languages 11–7

1070 072 305-104 (03.03) GB

Entries in the symbol file for example in the illustration below:
I2.0,BOOL SET1;
I2.1,BOOL SET2;
I2.2,BOOL RES;

Last dialog window for the specification of the parameters of the call interface

Afterwards, press “Finish”. With this, a module call is generated by WinSPS
automatically in the Bosch-IL. Moreover, entries are accepted in the symbol
file.

CAUTION
Do not change the automatic entries in the Bosch-IL and the symbol
file!
Especially, the comment rows must remain unchanged so that the
WinSPS can manage the calls of the IEC modules!

Use of IEC modules in the classical programming languages11–8

1070 072 305-104 (03.03) GB

11.3.2 Changing the FB calls

An FB call generated through the wizard can be changed subsequently from
the menu function Edit " Call up parameter list.

1. The FB should have been compiled free of any error.
2. In the symbol file, all operands, which are to be used as actual

parameters of the FB call interface, must be declared, also re-
fer to section 11.4 and 6.5.3.

3. The write cursor must be positioned within the call to be chan-
ged. In the Bosch-IL, an FB call can be identified from the preli-
minary comment rows:
; IEC_FUNCTION_BLOCK: ...
Position the write cursor after the preliminary comment rows,
e.g. on a “DEF” statement.

4. Using the menu function Edit " Call parameter list the wi-
zard for calling a POU call is started. Multiple dialog windows
appears one after another.

5. In the first dialog window, select the desired function block, as
shown in section 11.3.1.

6. In the second dialog window, select the desired instance, or en-
ter a new instance, also refer to section 11.3.1.
You must activate the option “Change IEC (IL/ST) call module”,
otherwise, the call parameters are not changed, instead, a new
FB call is inserted. The following illustration shows this dialog
window.

In this dialog window, the option “Change IEC (IL/ST)Call module” must be activated

7. In the third dialog window, the parameters of the call interface
are edited, also refer to section 11.3.1.

Use of IEC modules in the classical programming languages 11–9

1070 072 305-104 (03.03) GB

With the menu function File " Create new project, all calls are checked
and converted (linked) into an executable program.

11.3.3 Deleting the FB calls

In order to delete an FB call from a Bosch-IL, the automatically generated
entries must be deleted by hand:

FB and instance
Within the Bosch-IL module, an FB call can be identified from the preliminary
comment rows:

; IEC_FUNCTION_BLOCK: ...

You can find the instance names further below:

; IEC_INSTANCE: ...

Delete FB call
If for the call, you have created a separate network in the Bosch IL, the net-
work can thus be simply deleted.

In case, other statements in addition to the FB call exist in the network, delete
the program rows between the comment markings

; IEC_FUNCTION_BLOCK: ...

and

; END_IEC_FUNCTION_BLOCK

(including these rows).

Cleaning up
With the menu function File " Create new project, the symbols, which
have become redundant, are removed from the symbol file, and with this, the
project is updated to the current status.

Use of IEC modules in the classical programming languages11–10

1070 072 305-104 (03.03) GB

11.3.4 Call in the Sequential Function Chart

The call to a function block (FUNCTION_BLOCK) is possible in two ways in-
side the Sequential Function Chart (SFC):

D In a step action
D Within the PLC instructions, in a single step

PLC instructions in a step action

Marking for
existing
PLC instructions

PLC instructions in a single step

PLC instructions are entered in the network “User IL”. Position the write cur-
sor in a free IL row, in which the FB call can be inserted. The call takes place
as described in section 11.3.

. Kindly take care that the PLC instructions are executed in a step action
or in a single step in each PLC cycle. If the processing should take
place dependent upon the step, this can be achieved by the jump state-
ment “JPCI”, refer to the example.

Example:
JPCI End4n5 (* Jump when the step is not active *)

End4n5:

The example shows the PLC instructions of a step function for the step
“4N5”. With the instruction “JPCI End4n5”, the PLC instructions are execu-
ted only when the step “4N5” is active.
The FB call can be inserted e.g. between the instructions “JPCI End4n5”
and “End4n5:” .
After the label “End4n5:”, instructions can be inserted, which are to be ex-
ecuted in every PLC cycle.

Use of IEC modules in the classical programming languages 11–11

1070 072 305-104 (03.03) GB

11.4 Symbol file – interface of mixed programming

In order to be able to access common data in a mixed programming, these
must be entered in the symbol file. While doing so, take care that reserved
areas or symbols are not edited. These areas and symbols are characteri-
sed within the symbol file by remarks in the comment rows. In this regard,
also refer to the section 10.3.

In contrast to the pure IEC programming, attention must be paid to the upper-
case/lowercase letters in case of mixed programming. If you for example en-
ter the symbolic operand “MARKERWORD_8” in the symbol file, you must
use this style “MARKERWORD_8” also inside the IEC modules and the call
interfaces.

11.4.1 Physical addresses and miscellaneous data

In the IEC 61131-3, physical PLC are standardized through the address ope-
rator %, the prefix I, Q, M and the marking of the data width. The address
data following this is however manufacturer specific. Bosch has implemen-
ted two positions separated by a dot.

In the classical programming, PLC addresses have a different format. The
following table contains a few examples of physical addresses in various ty-
pes of programming:

IEC 61131-3 Classical programming

%Q3.1 Q3.1

%MW8 M8

%IX5.7 I5.7

Access
In two examples in section 7.3.4, it was shown how physical addresses out-
side the PROGRAM POU are accessed:

1) Through the call interface of functions and function blocks
2) As global data (not possible in case of functions)

These options can be realized even in case of mixed programming, refer to
section 11.4.2 and 11.4.3.

Since in the mixed programming, there is no PROGRAM POU, the symbol
file is used as declaration source.

Data declaration
In the symbol file, no variable types such as “VAR”, “VAR_GLOBAL” or
“VAR_EXTERNAL” can be specified. Declarations in the symbol file is al-
ways global (VAR_GLOBAL).

In addition to the physical addresses, other data areas of the PLC can be
used for mixed programs:

Use of IEC modules in the classical programming languages11–12

1070 072 305-104 (03.03) GB

Operand Explanation

I Physical input

Q Physical output

M Marker

SM Special marker

DB Data buffer

DF Data field

Format
Declaration format of commonly usable operands in the symbol file:

Operand,data type Variable name

. The data type is specified directly after the (absolute) operand – sepa-
rated by comma. No space or delimiter may be set in between.

The specification of the data type is optional. In the IEC modules however a
checking of the data type is carried out. It is recommended that always the
suitable data be specified so that on project generation (linking), no war-
nings are outputted.

The variable name must comply with the rules for the identifiers, refer to sec-
tion 7.1.2.

Examples
Q3.1,BOOL Q3_1
MW8,WORD MARKERWORD_8
I5.7,BOOL SENSOR_1

Use of IEC modules in the classical programming languages 11–13

1070 072 305-104 (03.03) GB

11.4.2 Symbolic operands via the call interface

FUNCTION_BLOCKs can be called up with the help of the WinSPS wizard
“Call up parameter list” from the Bosch-IL or from a SFC step, refer to section
11.3.

In the dialog window of the actual parameters, the symbolic operands of the
input or output parameters are assigned. Here, every symbol must be prefi-
xed with a hyphen (–), refer to the illustration below.

First, the operands (variables) must be entered in the symbol file. Absolute
physical operands can be similarly specified. The uppercase /lowercase let-
ters of the parameters must match with the operands in the symbol file.

Dialog window of the WinSPS function “Call up parameter list”

Entries in the symbol file related to the abov-mentioned example:

Q3.1,BOOL Q3_1
MW8,WORD MARKERWORD_8
I5.7,BOOL SENSOR_1

The actual parameter for “ParaOut” must not be entered in the symbol file as
in this case, directly the absolute operand “Q12” is transferred instead of a
symbolic operand.

Use of IEC modules in the classical programming languages11–14

1070 072 305-104 (03.03) GB

11.4.3 Symbolic operands as global variables

There is an option for importing the operands declared in the symbol file as
global variables in FUNCTION_BLOCKs. In this regard, three things must
be kept in mind:

D Absolute addresses cannot be accessed from IEC modules. All addres-
sed must as a result be available in the symbol file as symbolic operands.

D The data type of the symbolic operands must be specified in the symbol
file. If the data type is left out, a warning is given out in the called module at
the time of linking (create new project).

Model entries in the symbol file:
Q3.1,BOOL Q3_1
MW8,WORD MRKERWORD_8
I5.7,BOOL SENSOR_1

Example for access in an IEC module:
FUNCTION_BLOCK xy
VAR_EXTERNAL
 Q3_1 : BOOL;
 MARKERWORD_8 : WORD
 SENSOR_1 : BOOL;
END_VAR
...

In the FB, the global variables with the variable type VAR_EXTERNAL are
imported. The uppercase /lowercase letters of the variable names must
match with the operands in the symbol file.

11.4.4 Global type definitions

Type definitions, which are entered in the global type editor (refer to section
5.5), can also be used in the modules of the classical programming langua-
ges in the call interface to the IEC modules.

For this, the name of the derived data types is assigned to an operand and
variable names in the symbol file.

Format
Declaration format for global type definitions in the symbol file:

Operand,data type Variable name

. The data type is specified directly after the (absolute) operand – sepa-
rated by comma. No space or delimiter may be set in between, refer to
the example below.

The variable name must comply with the rules for the identifiers, refer to sec-
tion 7.1.2.

Use of IEC modules in the classical programming languages 11–15

1070 072 305-104 (03.03) GB

Example
The following illustration shows an extract from the type editor with various
derived data types (the elements of the data structure “Structure” are visi-
ble).

Global derived data types in the type editor

These data types are declared in the symbol file for the mixed programming
environment:

M20,GlobalType INTEGER_125
DF0,Structure STRUCTURENAME
DB4,Enumerate COLORS

Working out the data size
To start with, with the declaration of a derived data type in the symbol file, an
“initial address” is created. All subsequent elements of the data type occupy
the memory addresses following this address. Thus for example, a data
structure occupies a continuous memory area depending upon the number
and data size of the structure elements.

BOOL types occupy a complete Byte in the memory.

Moreover, attention must be paid to the maintenance of “base byte addres-
ses”. Information concerning this can be found in the software manual of the
respective controller.

DANGER
With the declaration of a derived data type in the symbol file, only an
“initial address” is created! The subsequent addresses must be wor-
ked out from the data size of the derived data types and the displace-
ments due to the base byte addresses. Subsequent addresses may
not be used for other access!
If subsequent addresses are used repeatedly, data area in the PLC
could get overwritten by mistake!

Use of IEC modules in the classical programming languages11–16

1070 072 305-104 (03.03) GB

Access to global type definitions
In the classical programming language (Bosch-IL), variable declared in the
symbol file can be used to access the derived data type. However, neither
elements of structures nor the names (text constants) of enumerations can
be accessed.

The declaration in the symbol file should rather allow transfer of a pointer to a
memory address in an IEC module. For the transfer of pointer variables, the
variable type “VAR_IN_OUT” in the function blocks is particularly suitable.

Similarly, the access via the variable type “VAR_EXTERNAL” is possible wit-
hin a function block.

Example for access via
call interface

The following illustration shows a typical application example for the transfer
of global data types via the call interface. Using the menu function “Call up
parameter list”, an FB call is generated inside the classical module, also refer
to section 11.3. In the dialog window of the actual parameters, the symbolic
operands of the input or output parameters are assigned. In this example,
pointer variables (VAR_IN_OUT) are implemented as parameters:

Dialog window of the WinSPS function “Call up parameter list”

It is important during parameter setting that the derived data types inside the
FB declaration match the definition in the type editor, refer to the illustration
above: Column data type. The uppercase /lowercase letters of the variable
names must match with the entries in the symbol file.

Use of IEC modules in the classical programming languages 11–17

1070 072 305-104 (03.03) GB

Example for access via
VAR_EXTERNAL

The access as global variable is allowed in the function block using the varia-
ble type “VAR_EXTERNAL”:

VAR_EXTERNAL
 INTEGER_125 : GlobalType;
 STRUCTURENAME : Structure;
 COLORS : Enumerate
END_VAR

Even here, make sure that the derived data types inside the FB declaration
match the definition in the type editor. The uppercase/lowercase letters of
the variable names must match with the entries in the symbol file.

11.5 Differences in case of mixed programming

In case of mixed programming, keep in mind that a few differences exist bet-
ween the classical programming and the programming as per IEC 61131-3.
The following table shows a comparison of important elements:

IEC 61131-3 Classical programming

Physical addresses Physical addressed are assigned a prefix
and data format. Example:
%IX3.7

Physical addresses have another format. Ex-
ample:
I3.7
In case of mixed programming, the classical
format is used throughout.

Strings (strings) The string terminator \0 is automatically ap-
pended.

\0 must be appended manually if the string is
to be processed free of any error in the IEC
environment.

Arrays and structures The maximum size of arrays and structures
is equal to the data module length minus
header data. Example:
Array1 : ARRAY[1.. 502] OF BYTE.
502 bytes are allowed, otherwise, an error
message is given out at the time of compila-
tion.

No restriction.

Identifiers Uppercase and lowercase letters do not play
any role.

In case of mixed programming, attention
must be paid to the uppercase / lowercase
letters. If for example the symbolic ope-
rand“MARKERWORD_8” is entered in the
symbol file, you must use this style “MAR-
KERWORD_8” also inside the IEC modules
and the call interfaces.

Use of IEC modules in the classical programming languages11–18

1070 072 305-104 (03.03) GB

Notes:

Standardized functionality 12–1

1070 072 305-104 (03.03) GB

12 Standardized functionality

In addition to the program and data structure, the IEC 61131-3 also standar-
dizes important PLC functionalities. These are predefined in the norm as
standard functions or function blocks. During implementation, all manufac-
turers of programming system or module libraries must follow these direc-
tions.

12.1 Standard functions

The standard functions are divided in various groups:

D Functions for data conversion
D Numeric functions
D Arithmetic functions

(in case of Bosch only through symbolic style, refer to 12.1.5)
D Shift functions
D Boolean functions
D Functions for selection and comparison

(Option not currently supported by WinSPS)
D Functions for strings (string functions)
D Special functions –data type – time
D Special functions – data types – enumeration

(not currently supported by WinSPS)

The following sections include instructions for parameterization and detailed
explanations concerning the standard functions.

. Pay attention to the instructions concerning the norm conformity in
section 13.
The supported standard functions are listed there.

12.1.1 Generic data types and “overloaded” functions

In many standard functions, the characteristics of generic data types are
used, refer to 7.2.3 and the illustration below. As a result of this, input varia-
bles of a function can not only be applied for one but multiple data types. With
this characteristic, they are termed as overload or overloadable functions.

In the following explanation of the standard functions, it is specified that
which functions are overloadable and which are not overloadable.

Standardized functionality12–2

1070 072 305-104 (03.03) GB

. Generic data types (ANY...) are used only for illustrative group forma-
tion of elementary data types. They can not be used for the declaration
of variables or for program processing. The declaration takes place in-
stead through the elementary data types associated with the group ,
z.B. “BYTE” for the group “ANY_BIT”.

ANY

ANY_NUM ANY_BIT ANY_DATE STRING TIME Derived
Data types

ANY_REAL ANY_INT BOOL DATE

SINT

TIME_OF_DAY
DATE_AND_TIME

BYTE
WORD
DWORD

DINT
USINT
UINT
UDINT

INT
REAL
LREAL

Hierarchical order of the generic data types.

Example
The input parameter IN of the standard function SHL (shift bit by bit towards
left) is of the common data type ANY_BIT. As a result, the data types BOOL,
BYTE, WORD and DWORD are allowed.

While calling up, the entire overloaded inputted parameters and possibly,
also the function value should have the same data type or the same data
width. If for example the comparison function LT is called up, both the para-
meters to be compared must be of the same data type.

. Generic data types can be used only for standard and manufacturer
functions. The programming of overloaded functions (user functions)
is not possible.

Standardized functionality 12–3

1070 072 305-104 (03.03) GB

12.1.2 Extensibility of functions

If a standard function allows a variable number of input parameters, it is ter-
med as extensible. Fundamentally, these are a few arithmetic (ADD, MUL),
bit string (boolean links), comparison and string functions.

Example
CONCAT (”To”, “gether”) (* 2 input parameters *)
CONCAT (”To”, “get”, “her”) (* 3 input parameters *)

12.1.3 Type conversion

The standard functions for the type conversion convert the input variable in
the data type of the function value (return value).

Function Data Type
Input

Data Type
Function value

Ü E Explanation

..._TO_... ANY ANY Y – Convert data type

TRUNC ANY_REAL ANY_INT Y – Make integer

BCD_TO_... ANY_BIT ANY Y – from BCD

..._TO_BCD ANY_BIT ANY_BIT Y – To BCD

TIME_AND_DATE_
TO_TIME_OF_DAY

DT TOD – – To time of day

DATE_AND_TIME_
TO_DATE

DT DATE – – To date

O: overloadable, E: extensible, Y: Yes, –: No

* The BCD coded conversion functions are not supported.

The general description of the function ..._TO_... allows the conversion of all
possible elementary data types, refer to the list below. The source data type
is specified on the left side, the destination data type on the right side.

During the type conversion of ANY_REAL to ANY_INT data types after deci-
mal positions are rounded or rounded off to the next integer.

The function TRUNC truncates all after decimal positions in order to get an
integer value.

. During the type conversion of numeric data types, take care that the
allowed value of the destination data type is not exceeded. If the value
of the input operand is too large, the result is reduced to the available
bit length of the output operand and thus supplies an incorrect value.

Standardized functionality12–4

1070 072 305-104 (03.03) GB

Examples (programming language ST):
Var := INT_TO_UDINT (–200); (* Var := 200 *)
Var := INT_TO_SINT (–200); (* does not create any

 useful value *)
Var := REAL_TO_DINT (–825.66);(* VAR := –826 *)
Var := TRUNC (–825.66); (* VAR := –825 *)
Var := BYTE_TO_UINT (16#96); (* Var := 150 *)
Var := INT_TO_BOOL (100); (* Var := TRUE *)
Var := INT_TO_BOOL (0); (* Var := FALSE *)

DANGER
The functions for the type conversion ..._TO_STRING and
STRING_TO_... are under preparation. However, no error message is
generated during compilation.
A run-time error would occur in the controller and the controller
would STOP!

The following list shows all the possible type conversion functions “...TO...”:

BOOL_TO_BYTE BOOL_TO_DINT BOOL_TO_DWORD BOOL_TO_INT BOOL_TO_SINT
BOOL_TO_TIME BOOL_TO_UDINT BOOL_TO_UINT BOOL_TO_USINT BOOL_TO_WORD

BYTE_TO_BOOL BYTE_TO_DINT BYTE_TO_DWORD BYTE_TO_INT BYTE_TO_SINT
BYTE_TO_TIME BYTE_TO_UDINT BYTE_TO_UINT BYTE_TO_USINT BYTE_TO_WORD

DINT_TO_BOOL DINT_TO_BYTE DINT_TO_DWORD DINT_TO_INT DINT_TO_SINT
DINT_TO_TIME DINT_TO_UDINT DINT_TO_UINT DINT_TO_USINT DINT_TO_WORD

DWORD_TO_BOOL DWORD_TO_BYTE DWORD_TO_DINT DWORD_TO_INT DWORD_TO_SINT
DWORD_TO_TIME DWORD_TO_UDINT DWORD_TO_UINT DWORD_TO_USINT DWORD_TO_WORD

INT_TO_BOOL INT_TO_BYTE INT_TO_DINT INT_TO_DWORD INT_TO_SINT
INT_TO_TIME INT_TO_UDINT INT_TO_UINT INT_TO_USINT INT_TO_WORD

SINT_TO_BOOL SINT_TO_BYTE SINT_TO_DINT SINT_TO_DWORD SINT_TO_INT
SINT_TO_TIME SINT_TO_UDINT SINT_TO_UINT SINT_TO_USINT SINT_TO_WORD

TIME_TO_BOOL TIME_TO_BYTE TIME_TO_DINT TIME_TO_DWORD TIME_TO_INT
TIME_TO_SINT TIME_TO_UDINT TIME_TO_UINT TIME_TO_USINT TIME_TO_WORD

UDINT_TO_BOOL UDINT_TO_BYTE UDINT_TO_DINT UDINT_TO_DWORD UDINT_TO_INT
UDINT_TO_SINT UDINT_TO_TIME UDINT_TO_UINT UDINT_TO_USINT UDINT_TO_WORD

UINT_TO_BOOL UINT_TO_BYTE UINT_TO_DINT UINT_TO_DWORD UINT_TO_INT
UINT_TO_SINT UINT_TO_TIME UINT_TO_UDINT UINT_TO_USINT UINT_TO_WORD

USINT_TO_BOOL USINT_TO_BYTE USINT_TO_DINT USINT_TO_DWORD USINT_TO_INT
USINT_TO_SINT USINT_TO_TIME USINT_TO_UDINT USINT_TO_UINT USINT_TO_WORD

WORD_TO_BOOL WORD_TO_BYTE WORD_TO_DINT WORD_TO_DWORD WORD_TO_INT
WORD_TO_SINT WORD_TO_TIME WORD_TO_UDINT WORD_TO_UINT WORD_TO_USINT

Standardized functionality 12–5

1070 072 305-104 (03.03) GB

12.1.4 Numeric functions

The data type of the input parameter must match with the data type of the
function value.

Function Data Type
Input

Data Type
Function value

Ü E Explanation

ABS ANY_NUM ANY_NUM Y – Absolute value

SQRT ANY_REAL ANY_REAL Y – Square root

LN ANY_REAL ANY_REAL Y – Natural algorithm

LOG ANY_REAL ANY_REAL Y – Algorithm base 10

EXP ANY_REAL ANY_REAL Y – Exponentiation

SIN ANY_REAL ANY_REAL Y – Sine function

COS ANY_REAL ANY_REAL Y – Cosine function

TAN ANY_REAL ANY_REAL Y – Tangent function

ASIN ANY_REAL ANY_REAL Y – Inverse sine function

ACOS ANY_REAL ANY_REAL Y – Inverse cosine function

ATAN ANY_REAL ANY_REAL Y – Inverse tangent function

O: overloadable, E: extensible, Y: Yes, –: No

Example (IL):
LD Alpha
COS
ST cosAlpha (* Cosine *)

Eample (ST):
cosAlpha := COS (Alpha); (* Cosine *)

12.1.5 Arithmetic functions

. In the programming language ST, while processing the data types
“ANY_NUM”, only the symbolic style of the arithmetic standard func-
tions can be entered.

Example:
Var1 := Var2 + Var3 + Var4; (* error free *)
Var1 := ADD (Var2, Var3, Var4); (* is reported as

 error *)

The modfier for the symbolic style is specified in the table in column “M”.

Standardized functionality12–6

1070 072 305-104 (03.03) GB

Function M Data Type
Input

Data Type
Function value

Ü E Explanation

ADD + ANY_NUM
ANY_NUM

ANY_NUM Y Y Addition

ADD + TIME
TIME

TIME Y – Time addition

ADD + TOD
TIME

TOD Y – Time addition

ADD + DT
TIME

DT Y – Time addition

MUL * ANY_NUM
ANY_NUM

ANY_NUM Y Y Multiplication

MUL * TIME
ANY_NUM

TIME Y – Time multiplication

SUB – ANY_NUM
ANY_NUM

ANY_NUM Y – Subtraction

SUB – TIME
TIME

TIME Y – Time subtraction

SUB – DATE
DATE

TIME Y – Time subtraction

SUB – TOD
TIME

TOD Y – Time subtraction

SUB – TOD
TOD

TIME Y – Time subtraction

SUB – DT
TIME

DT Y – Time subtraction

SUB – DT
DT

TIME Y – Time subtraction

DIV / ANY_NUM
ANY_NUM

ANY_NUM Y – Division

DIV / TIME
ANY_NUM

TIME Y – Time division

MOD ANY_NUM
ANY_NUM

ANY_NUM Y – Modulo, residue bilding

EXPT ANY_NUM
ANY_NUM

ANY_NUM Y – Exponent

MOVE ANY_NUM
ANY_NUM

ANY_NUM Y – Assignment

S: Symbolic style, O: overloadable, E: extensible, Y: Yes, –: No

If the division of an integer does not result in an integer, the after decimal
positions are truncated.

. The division by zero is not allowed!

Example (ST):
todMESZ:= ADD (todMEZ, T#1h); (* Addition with the

 type time of day *)

Standardized functionality 12–7

1070 072 305-104 (03.03) GB

12.1.6 Shift functions

The data type of the first input parameter must match with the data type of the
function value.

The second input parameter “N” must contain an integer value. The parame-
ter contains the number of the positions to be shifted or rotated.

Function Data Type
Input

Data Type
Function value

O E Explanation

SHL ANY_BIT
N

ANY_BIT Y – Shifting towards left
(fill with zeros from left)

SHR ANY_BIT
N

ANY_BIT Y – Shifting towards right
(fill with zeros from left)

ROR ANY_BIT
N

ANY_BIT Y – Rotate towards right
(ring shape)

ROL ANY_BIT
N

ANY_BIT Y – Rotate towards left
(ring shape)

O: overloadable, E: extensible, Y: Yes, –: No

Example (ST):
%QB8 := SHR (2#01101100, 4); (* Shift 4 positions

 towards right *)
(* %QB := 2#00000110 *)

Rot1 := ROL (2#11000011, 2); (* Rotate 2 positions
 towards left *)
(* Rot1 := 2#00001111 *)

Standardized functionality12–8

1070 072 305-104 (03.03) GB

12.1.7 Boolean functions – logical links

The data type of the input parameter must match with the data type of the
function value.

The symbol for the symbolic style is specified in the table in the second co-
lumn.

Function S Data Type
Input

Data Type
Function value

O E Explanation

AND & ANY_BIT
ANY_BIT

ANY_BIT Y Y Logical AND

OR ANY_BIT
ANY_BIT

ANY_BIT Y Y Logical OR

XOR ANY_BIT
ANY_BIT

ANY_BIT Y Y Logical exclusive OR

NOT ANY_BIT ANY_BIT Y – Logical negation

O: overloadable, E: extensible, Y: Yes, –: No

. In the programming language ST, only the symbolic style of the arith-
metic standard functions can be entered.

Examples (IL):
LDN B
AND A
ST C

LD 2#10100110 (* Bit pattern *)
& 2#11110000
ST %QB0

Example (ST):
C := A AND NOT B;

12.1.8 Selection

Functions for selection are presently not supported.

Standardized functionality 12–9

1070 072 305-104 (03.03) GB

12.1.9 Comparison

The data type ENUM stands for the “derived data type” enumeration, refer to
7.2.2.

Function Data Type
Input

Data Type
Function value

O E Explanation

GT ANY
ANY

BOOL Y Y Greater than

GE ANY
ANY

BOOL Y Y Greater than or equal

EQ ANY
ANY

BOOL Y Y Equal

EQ ENUM
ENUM

BOOL – – Equal

LT ANY
ANY

BOOL Y Y Less than

LE ANY
ANY

BOOL Y Y Less than or equal

NE ANY
ANY

BOOL Y – Unequal

NE ENUM
ENUM

BOOL – – Unequal

O: overloadable, E: extensible, Y: Yes, –: No

Example (IL):
M1: LD iOperand1

ADD iOperand2
ST iResult (* calculation result *)
EQ 100 (* comparison CR = 100 ?... *)
JMPC M2 (* ...then jump to M2 *)

Example (ST):
bLT := LT (Var_1, Var_2);
 (* Comparison, whether Var_1 is less than Var_2 *)

Standardized functionality12–10

1070 072 305-104 (03.03) GB

12.1.10 Functions for strings

Function Data Type
Input

Data Type
Function value

O E Explanation

LEN STRING INT – – Determining the length of a
string

LEFT STRING
L

STRING Y – Cutting off the beginning of a
string, L characters from left

RIGHT STRING
R

STRING Y – Cutting off the end of a string, R
characters from right

MID STRING
L
R

STRING Y – Cutting of the beginning and end
of a string, L characters from left
and R characters from right

CONCAT STRING
STRING

STRING – Y Concatenating multiple strings

*CONCAT DATE
TOD

DT – – Date and time of day to put
together
date + time of day*

INSERT STRING
STRING
P

STRING Y Y Inserting a string (2nd STRING)
in another (1st STRING), from
position P onwards

DELETE STRING
L
P

STRING Y Y Deleting a part of a string, L
characters from position P
onwards

REPLACE STRING
STRING
L
P

STRING Y Y Replacing a part (1st STRING)
in a string by another part (2nd
STRING), L characters from
position P onwards

FIND STRING
STRING

INT Y Y Searching a string (2nd
STRING) within another string
(1st STRING).
Function value = Found position,
otherwise 0

O: overloadable, E: extensible, Y: Yes, –: No

* The function CONCAT with date and time is not supported.

. Positions within strings are counted starting from“1”.

Example (ST):
iLength := LEN (’String’); (* Determining the

 string length:
 iLength := 6 *)

szMid := MID (’ABCDEF’, 2, 1);
 (* Cutting off: szMid := ’BCDE’ *)

szCon := CONCAT (’To’, ’get’, ’her’);
 (* szCon := ’Together’ *)

Standardized functionality 12–11

1070 072 305-104 (03.03) GB

szNew := INSERT (’ABCDEF’, ’12345’, 3, 2);
 (* Inserting: szNew := ’A123BCDEF’ *)

iPos := FIND (’ABCDEF’, ’DE’);(* Search: iPos := 4 *)

DANGER
If the size of the string is increased by a function, the related string
variable must be declared large enough, for example, see below.
It can otherwise have the effect that the address range is crossed,
which can lead to uncontrolled behavior!

Erroneous example:
VAR
 szVar : STRING (13);
END_VAR

szVar := CONCAT (’more ’, ’characters’);

The string variable “szVar” can take 13 characters. In the function call “CON-
CAT” however it must be able to accept at least 14 characters. It has the ef-
fect that the address range is exceeded.

Standardized functionality12–12

1070 072 305-104 (03.03) GB

12.2 Standard function block

The IEC 61131-3 defines the following standard function blocks which can
be divided in groups:

Name Inputs Outputs Explanation

Bistable elements
SR
RS

Set1*,ReSet*
Set*,ReSet1*

Q1
Q1

Setting on priority
Resetting on priority

Edges
R_TRIG
F_TRIG

CLK
CLK

Q
Q

Detection of rising edge
Detection of falling edge

Counter
CTU
CTD
CTUD

CU,ReSet*,PV
CD,Load*,PV
CU,CD,R*,Load*,PV

Q,CV
Q,CV
QU,QD,CV

Forward counter
Backward counter
forward/backward counter

Time
TP
TON
TOF
RTC

IN,PT
IN,PT
IN,PT
EN,PDT

Q,ET
Q,ET
Q,ET
Q,CDT

Pulse generator
Switch on delay
Switch off delay
Real–time clock

* Refer to instructions

. The key words “R”, “S” und “LD” of the input parameters are used in
the programming language instructions list (IL) with another meaning.
Due to this conflict, there are difficulties during translation by a compi-
ler. This problem was taken up in the working group for further deve-
lopment of the IEC 61131-3. In a revised version of the standard, the
parameter names should be changed to “Set”, “ReSet” und “Load”.
Bosch already uses this modified form.

. All variables are basically handled as with RETAIN attribute. Excep-
tions are the standard FBs. These are basically non-remanent i.e. they
are re-initialized after every STOP/RUN switchover.

Standardized functionality 12–13

1070 072 305-104 (03.03) GB

Description of all input and output parameters:

Parameter Explanation Data Type

CD Input count downwards (Count Down) R_EDGE

CDT Current date and time
(Current Date and Time)

DT

CLK Cycle input (CLocK) BOOL

CU Input count upwards (Count UP) R_EDGE

CV Current Value INT

ET Current time (End Time) TIME

IN Time input (INput) BOOL

LOAD (LD) Load counter value (LoaD) INT

PDT Date/time (Preset Date and Time) DT

PT Time (Preset Time) TIME

PV Counter value INT

Q Output BOOL

QD Output downwards (Down) BOOL

QU Output upwards (Up) BOOL

RESET (R) Reset input (Reset) BOOL

R1 R on priority BOOL

SET (S) Set input (Set) BOOL

S1 S on priority BOOL

Standardized functionality12–14

1070 072 305-104 (03.03) GB

12.2.1 Bistable elements – Flipflops

The norm recognizes two types of Flip Flops :

D SR Flipflop Set dominant
D RS Flipflop Reset dominant

SR Flipflop

SR Flipflop: Set dominant

Set1 set condition
ReSet reset condition
Q1 Output condition of the bistable element

The function block ”SR” has the characteristic of switching a data element –
the output ”Q1” – statically to the binary state ”1” or ”0”.

The switchover between both the states takes place depending upon the va-
lue of the binary operands ”Set1”and ”ReSet”. At the beginning, the output
”Q1” is initialized with the value ”0”. The first processing of the function block
with the value ”1” of the operand ”Set1” has the effect that the output ”Q1”
contains the value ”1”– it is set. After this, the change in the value of ”Set1”
has no influence on the output ”Q1”. The value ”1” of the input operand ”Re-
Set” switches the output ”Q” to the state ”0” – the output is reset. If both the
input operands take the value ”1”, the fulfilled set condition dominates i.e.
”Q1” is set on priority.

RS Flipflop

RS Flipflop: Reset dominant

Set set condition
ReSet1 reset condition
Q1 Output condition of the bistable element

The function block ”RS” has the characteristic of switching a data element –
the output ”Q1” – statically to the binary state ”1” or ”0”.

The switchover between both the states takes place depending upon the va-
lue of the binary operands ”Set”and ”ReSet1”. At the beginning, the output
”Q1” is initialized with the value ”0”. The first processing of the function block
with the value ”1” of the operand ”Set” has the effect that the output ”Q1” con-
tains the value ”1”– it is set. After this, the change in the value of ”Set” has no
influence on the output ”Q1”. The value ”1” of the input operand ”ReSet1”
switches the output ”Q1” to the state ”0” – the output is reset. If both the input
operands take the value ”1”, the fulfilled reset condition dominates i.e. ”Q1” is
reset on priority.

Standardized functionality 12–15

1070 072 305-104 (03.03) GB

12.2.2 Edge detection

The norm recognizes two different modules for edge detection:

D R_TRIG rising edge
D F_TRIG falling edge

Rising edge R_TRIG

R_TRIG: Rising edge

CLK Input operand, whose rising edge is detected
Q Output operand reports the rising edge of ”CLK”

The function block ”R_TRIG” evaluates the condition of the input operand
”CLK”. The condition change from ”0” in a processing cycle to ”1” in the next
processing cycle is detected and is indicated through the output ”Q” with the
binary value ”1”. The state ”1” exists at the output only in the processing cy-
cle, in which the condition change of ”CLK” is detected and a rising edge is
reported.

Falling edge F_TRIG

F_TRIG: Falling edge

CLK Input operand, whose falling edge is detected
Q Output operand reports the falling edge of ”CLK”

The function block ”F_TRIG” evaluates the condition of the input operand
”CLK”. The condition change from ”1” in a processing cycle to ”0” in the next
processing cycle is detected and is indicated through the output ”Q” with the
binary value ”1”. The state ”1” exists at the output only in the processing cy-
cle, in which the condition change of ”CLK” is detected and a falling edge is
reported.

Standardized functionality12–16

1070 072 305-104 (03.03) GB

12.2.3 Counter

Counters can follow in different directions. The norm makes three counters
available:

D CTU Upward counter
D CTD Downward counter
D CTUD Upward / downward counter

. The inputs of the counter modules are edge triggered (R_EDGE) i.e. a
rising edge must exist so that the counter value changes.

. Counters must be initialized with count limit or an initial value (PV),
otherwise, they do not run!

Upward counter CTU

CTU: Upward counter

CU Count pulse, rising edge
ReSet reset condition
PV count limit
Q Message: Counter value greater than equal to PV
CV Counter value

The function block ”CTU” is used for upward counting of pulses which are
supplied by the input operand ”CU”. During the initialization, the counter gets
the value ”0”. Every rising edge at the input ”CU” increments the counter, i.e.
increases its value by one. The counter value can be erased with the value
”1” of the operand”ReSet”. The output operand ”CV” supplies the current co-
unter value. If the counter value lies below the limit ”PV”, the output operand
”Q” takes the binary value ”0”. The reaching or exceeding the limit sets the
output ”Q” to ”1”.

Downward counter CTD

CTD Downward counter

CD Count pulse, rising edge
Load set condition
PV initial value
Q Message: Counter value smaller than equal to zero
CV Counter value

Standardized functionality 12–17

1070 072 305-104 (03.03) GB

The function block ”CTD” is used for downward counting of pulses which are
supplied by the input operand ”CD”. During the initialization, the counter gets
the value ”0”. With the value ”1” of the operand ”Load”, the value specified by
the operand ”PV” is accepted as the initial value in the counter. Every rising
edge at the input ”CD” decrements the counter, i.e. decreases its value by
one. The output operand ”CV” supplies the current counter value. If the co-
unter value lies above the value ”0”, the output operand ”Q” takes the binary
value ”0”. When the counter value becomes equal to “0” or less than “0”, the
output ”Q” is set to ”1”.

Upward and downward counter CTUD

CTUD: Upward / downward counter

CU Count pulse, rising edge
CD Count pulse, rising edge
ReSet reset condition
Load load condition
PV load value
QU Message: Counter value greater than equal to PV
QD Message: Counter value smaller than equal to zero
CV Counter value

The function block ”CTUD” is used for upward and downward counting of
pulses. During the initialization, the counter gets the value ”0”. Every rising
edge at the input ”CU” increments the counter, i.e. increases its value by one,
a rising edge at the input ”CD” decrements the counter, e.e. decreases its
value by one. With the value ”1” of the operand ”Load”, the value specified by
the operand ”PV” is accepted in the counter.

The counter value can be erased with the value ”1” of the operand”ReSet”.
While the static state ”1”, the operand ”ReSet” continues, the fulfilled count
conditions or the fulfilled load conditions have no influence on the counter
value.

The output operand ”CV” supplies the current counter value. If the counter
value lies below the load value ”PV”, the output operand ”QU” takes the boo-
lean value ”0”. On reaching or exceeding the load value, the output ”QU” is
set to ”1”. While the counter value lies above the value ”0”, the output ope-
rand ”QD” takes the binary value ”0”. When the counter value becomes
equal to “0” or less than “0”, the output ”QD” is set to ”1”.

Standardized functionality12–18

1070 072 305-104 (03.03) GB

12.2.4 Timer

The norm recognizes three time elements and the processing of the PLC in-
ternal real-time clock:

D TP Pulse
D TON On-delay
D TOF Off-delay
D RTC Real-time clock

Pulse TP

PT Time as pulse

IN Start condition
PT time specification
Q condition of the timer
ET current time

Time diagram

The rising edge of the input operand ”IN” starts the time function of the timer
”TP” for the time duration specified through the operand ”PT”. During this pe-
riod, the output operand ”Q” is in the state ”1”. The condition change at the
input ”IN” then does not have any influence on the flow.

If the ”PT” value changes after the start, it becomes effective only with the
next rising edge of the operand ”IN”.

The output operand ”ET” shows the current time value. If the operand ”IN” is
in the state ”1” on the expiry of the starting period, the operand ”ET” retains
the value. When the condition of the operand ”IN” switches to ”0”, the value of
”ET” changes to ”0”.

During the non-running period, every edge triggers a pulse of specific dura-
tion.

Standardized functionality 12–19

1070 072 305-104 (03.03) GB

On-delay TON

TON: On-delay

IN Start condition
PT time specification
Q condition of the timer
ET current time

Time diagram

The rising edge of the input operand ”IN” starts the time function of the timer
”TON” for the time duration specified through the operand ”PT”. During the
running period, the output operand ”Q” is in the state ”0”. After the expiry of
the starting period, the condition changes to ”1” and the same is maintained
until the operand ”IN” changes to ”0”.

If the ”PT” value changes after the start, it becomes effective only with the
next rising edge of the operand ”IN”.

The output operand ”ET” shows the current time value. If the started time is
expired, the operand ”ET” retains the value so long as the operand ”IN” is in
the state ”1”. When the condition of the operand ”IN” switches to ”0”, the va-
lue of ”ET” changes to ”0”. If the condition of the operand ”IN” changes while
the time runs to ”0”, the process is interrupted and the operand ”ET” again
assumes the value ”0”. The switching on at the input ”IN” switches on the
output ”Q” delayed by the specified time duration.

Off–delay TOF

TOF: Off-delay

IN Start condition
PT time specification
Q condition of the timer
ET Expiring time

Standardized functionality12–20

1070 072 305-104 (03.03) GB

Time diagram

The state ”1” of the input operand ”IN” is transferred without delay to the out-
put operand ”Q”. The falling edge of the ”IN” starts the time function for the
time duration specified through the operand ”PT”. The condition change at
the input ”IN” to “0” then does not have any influence on the flow. After the
time expires, the operand ”Q” changes to the state ”0”.

If the ”PT” value changes after the start, it becomes effective only with the
next rising edge of the operand ”IN”.

The output operand ”ET” shows the current time value. If the started time is
expired, the operand ”ET” retains the value so long as the operand ”IN” is in
the state ”1”. When the condition of the operand ”IN” switches to ”0”, the va-
lue of ”ET” changes to ”0”. The switching off at the input ”IN” switches off the
output ”Q” delayed by the specified time duration.

Real-time clock RTC

RTC: Real-time clock

EN Set condition (not in function)
PDT Set value for the real-time clock (not in function)
Q Display of the current value of EN
CDT Current date and time

The output operand ”Q” indicates the condition of ”EN”. The current time sta-
tus is outputted through the operand ”CTD”.

. The IEC allows the setting of the PLC internal real-time clock with the
function block RTC. In case of Bosch, RTC can be used only for rea-
ding the real-time clock. The setting must take place using the corres-
ponding system command in the WinSPS editor or monitor. RTC does
not work with milliseconds.

Standard fulfilment 13–1

1070 072 305-104 (03.03) GB

13 Standard fulfilment

The following conformity tables as per IEC 61131-3 are used as checklists
for evaluating the standard fulfillment. They demonstrate the characteristics
of the WinSPS programming system. For the classical programming langua-
ges Bosch-IL, LD, FBD and SFC , the statements do not apply or apply only
to a limited extent. The numbering in the tables are identical to the numbe-
ring in the IEC 61131-3.

The Bosch programming system WinSPS has the “Base Level Certificate”
for the programming language ST.

13.1 Common elements

Character set characteristics (table 1)

No. Explanation Yes No

1 Required character set x

2 Lowercase letters x

3a

3b

Hash sign (#)
or

Pound sign

x

x

4a

4b

Dollar sign ($)
or
Currency symbol

x

x

5a

5b

Vertical bar (|)
or
Exclamation sign (!) x

x

6a

6b

Indexing delimiter:
Square brackets []
or
Parenthesis ()

x

x

Identifier characteristics (table 2)

No. Explanation Yes No

1 Uppercase letters and figures x

2 Uppercase and lowercase letters, figures, em-
bedded understrokes

x

3 Uppercase and lowercase letters, figures, leading
and embedded understrokes

x

Comment characteristics (table 3)

No. Explanation Yes No

1 Comments x

Standard fulfilment13–2

1070 072 305-104 (03.03) GB

Numeric literals (table 4)

No. Explanation Yes No

1 Integer literals x

2 Real literals x

3 Real literals with exponents x

4 Binary literals x

5 Octal literals x

6 Hexadecimal literals x

7 Boolean zero and one x

8 Boolean FALSE and TRUE x

Characteristics of string literals (Table 5)

No. Explanation Yes No

1 Empty string (zero length)

String of length 1 with character A

String of length 1 with space

String of length one with a quotation mark

String of length 2 with CR and LF character

String of length 5, printed as “$1.00”

x

x

x

x

x

x

2 Character combinations in strings (table 6)

No. Explanation Yes No

2 Dollar sign ($$) x

3 Single quotation mark ($’) x

4 Linefeed ($L or $l) x

5 New line ($N or $n) x

6 New page ($P or $p) x

7 Carriage return ($R or $r) x

8 Tab ($T or $t) x

Standard fulfilment 13–3

1070 072 305-104 (03.03) GB

Time duration literal characteristics (table 7)

No. Explanation Yes No

1a
1b

Time duration literals without understroke:

Short prefix
Long prefix

x
x

2a
2b

Time duration literals with understroke:

Short prefix
Long prefix

x
x

Literals for date and time (table 8)

No. Explanation Yes No

1 Literals for date (long prefix: DATE#) x

2 Literals for date (short prefix: D# x

3 Literals for time of day (long prefix:
TIME_OF_DAY#)

x

4 Literals for time of day (short prefix: TOD#) x

5 Literals for date and time
(Long prefix: DATE_AND_TIME#)

x

6 Literals for date and time (short prefix: DT#) x

Standard fulfilment13–4

1070 072 305-104 (03.03) GB

Elementary data types (table 10)

No. Keyword Data Type Yes No

1 BOOL Boolean x

2 SINT Short integer x

3 INT Integer x

4 DINT Double integer x

5 LINT Long integer x

6 USINT Unsigned short integer x

7 UINT Unsigned integer x

8 UDINT Unsigned double integer x

9 ULINT Unsigned long integer x

10 REAL Real number x

11 LREAL Long real number x

12 TIME Time duration x

13 DATE (only) date x

14 TIME_OF_DAY or
TOD

(only) time x

15 DATE_AND_
TIME or TD

Date and time x

16 STRING Variable length string x

17 BYTE Bit string of length 8 x

18 WORD Bit string of length 16 x

19 DWORD Bit string of length 32 x

20 LWORD Bit string of length 64 x

Characteristics of data type declaration (table 12)

No. Characteristics of data type declarations Yes No

1 Direct derivation of elementary data types x

2 Data types for enumeration types x

3 Data type for range x

4 Data type for array x

5 Data type for structures x

Standard fulfilment 13–5

1070 072 305-104 (03.03) GB

Preset initial value (table 13)

Explanation Initialization value Yes No

BOOL, SINT, INT
DINT, LINT,

0 x

USINT, UINT,
UDINT, ULINT

0 x

BYTE, WORD,
DWORD, LWORD

0 x

REAL, LREAL 0.0 x

TIME T#0s x

DATE D#0001-01-01 x

TIME_OF_DAY TOD#00:00:00 x

DATE_AND_TIME DT#0001-01-01-00:00:00 x

STRING ”(the empty string) x

Characteristics of the initial values of data types
(Table 14)

No. Explanation Yes No

1 Initialization of directly derived types x

2 Initialization of data types for enumeration x

3 Initialization of data types for sub-range x

4 Initialization of data types for array x

5 Initialization of data types for structure x

6 Initialization of data types for derived structure x

Characteristics of prefix for memory area and size for directly dis-
played variables
(Table 15)

No. Explanation Yes No

1 I: Memory area input x

2 Q: Memory area output x

3 M Memory area label x

4 X: Single bit size x

5 None: Single bit size x

6 B: Byte size x

7 W Word size x

8 D Double word size x

9 L: Long word size x

Standard fulfilment13–6

1070 072 305-104 (03.03) GB

Keywords for variable declaration (table 16)

Key word Yes No

VAR x

VAR_INPUT x

VAR_OUTPUT x

VAR_IN_OUT x

VAR_EXTERNAL x

VAR_GLOBAL x

VAR_ACCESS x

RETAIN x

CONSTANT x

AT x

Characteristics of type assignment for variable (table 17)

No. Explanation Yes No

1 Declaration of directly displayed non-buffered vari-
ables

x

2 Declaration of directly displayed buffered variables x

3 Declaration of memory area in case of symbolic
variables

x

4 Assignment of memory area in case of array x

5 Automatic memory allocation for symbolic variable x

6 Declaration for array x

7 Declaration for buffered array x

8 Declaration for structured variables x

Standard fulfilment 13–7

1070 072 305-104 (03.03) GB

Characteristics of assignment of initial values for variable
(Table 18)

No. Explanation Yes No

1 Initialization of directly displayed non-buffered vari-
ables

x

2 Initialization of directly displayed buffered variables x

3 Allocation of memory area and initial value for sym-
bolic variables

x

4 Allocation of memory area and initialization for
array

x

5 Initialization of symbolic variables x

6 Initialization for array x

7 Declaration and initialization for buffered array x

8 Initialization of structured variables x

9 Initialization of constants x

Type data and overloaded functions (table 21)

No. Explanation Yes No

1 Overload functions (type independent) x

2 Functions with type data x

Characteristics of functions for type conversion (table 22)

No. Explanation Yes No

1 *_TO_** x

2 TRUNC x

3 BCD_TO_** x

4 *_TO_BCD x

Standard fulfilment13–8

1070 072 305-104 (03.03) GB

Standard functions with numeric variables (table 23)

No. Explanation Yes No

1 ABS x

2 SQRT x

3 LN x

4 LOG x

5 EXP x

6 SIN x

7 COS x

8 TAN x

9 ASIN x

10 ACOS x

11 ATAN x

Arithmetic standard functions (table 24)

No. Name Symbol Yes No

12 ADD + x

13 MUL * x

14 SUB - x

15 DIV / x

16 MOD x

17 EXPT ** x

18 MOVE := x

Standard bit shift functions (table 25)

No. Name Yes No

1 SHL x

2 SHR x

3 ROR x

4 ROL x

Bit boolean standard functions (table 26)

No. Name Yes No

5 AND x

6 OR x

7 XOR x

8 NOT x

Standard fulfilment 13–9

1070 072 305-104 (03.03) GB

Standard functions for selection (table 27)

No. Name Yes No

1 SEL x

2a MAX x

2b MIN x

3 LIMIT x

4 MUX x

Standard functions for comparison (table 28)

No. Name Yes No

5 GT x

6 GE x

7 EQ x

8 LE x

9 LT x

10 NE x

Standard functions for strings (table 29)

No. Name Yes No

1 LEN x

2 LEFT x

3 RIGHT x

4 MID x

5 CONCAT x

6 INSERT x

7 DELETE x

8 REPLACE x

9 FIND x

Standard fulfilment13–10

1070 072 305-104 (03.03) GB

Functions for data types of time (table 30)

No. Name Operation Yes No

1

2

3

ADD TIME + TIME = TIME

TOD + TIME = TOD

DAT + TIME = DAT

x

x

x

4

5

6

7

8

9

SUB TIME - TIME = TIME

DATE - DATE = TIME

TOD - TIME = TOD

TOD - TOD = TIME

DAT - TIME = DAT

DAT - DAT = TIME

x

x

x

x

x

x

10

11

MUL

DIV

TIME * ANY_NUM = TIME

TIME / ANY_NUM = TIME

x

x

12 CONCAT DATE TOD = DAT x

13

14

Functions for type conversion

DATE_AND_TIME_TO_TIME_OF_DAY

DATE_AND_TIME_TO_DATE

x

x

Functions for data types of enumeration (table 31)

No. Name Yes No

1 SEL x

2 MUX x

3 EQ x

4 NE x

Standard fulfilment 13–11

1070 072 305-104 (03.03) GB

Characteristics of function block declaration (table 33)

No. Explanation Yes No

1 RETAIN for internal variables x

2 RETAIN for output variables x

3 RETAIN for internal function blocks x

4a Input/ output declaration (text form) x

4b Input/ output declaration (graphical) x

5a Function block instance name as input (text form) x

5b Function block instance name as input (graphical) x

6a Function block instance name as input/ output (text
form)

x

6b Function block instance name as input/ output
(graphical)

x

7a Function block instance name as external variable
(text form)

x

7b Function block instance name as external variable
(graphical)

x

8a

8b

Declaration in text form of inputs

With rising edge

With falling edge

x

x

9a

9b

Graphical declaration of inputs

With rising edge

With falling edge

x

x

Bistable standard functions (table 34)

No. Name Yes No

1 SR x

2 RS x

3 SEMA x

Standard function blocks edge detection (table 35)

No. Name Yes No

1 R_TRIG x

2 F_TRIG x

Standard function blocks counters (table 36)

No. Name Yes No

1 CTU x

2 CTD x

3 CTUD x

Standard fulfilment13–12

1070 072 305-104 (03.03) GB

Standard function blocks timer (table 37)

No. Name Yes No

1 TP (Puls) x

2a TON (on delay) x

2b T---0 (on delay) x

3a TOF (off delay) x

3b 0---T (off-delay) x

4 RTC (real time clock) x

Standard fulfilment 13–13

1070 072 305-104 (03.03) GB

Characteristics of program declaration (table 39)

No. Explanation Yes No

1 RETAIN for internal variables x

2 RETAIN for output variables x

3 RETAIN for internal function blocks x

4a Input/ output declaration (Textform) x

4b Input/ output declaration (graphical) x

5a Function block instance name as input (text form) x

5b Function block instance name as input (graphical) x

6a Function block instance name as input/ output (text
form)

x

6b Function block instance name as input/ output
(graphical)

x

7a Function block instance name as external variable
(text form) x

7b Function block instance name as external variable
(graphical) x

8a
8b

Declaration in text form of inputs

With rising edge

With falling edge

x
x

9a
9b

Graphical declaration of inputs

With rising edge

With falling edge

x
x

10 Formal input and output parameters x

11 Declaration of directly displayed non-buffered vari-
ables

x

12 Declaration of directly displayed buffered variables x

13 Declaration of memory area in case of symbolic
variables

x

14 Assignment of memory area in case of field x

15 Initialization of directly displayed non-buffered vari-
ables

x

16 Initialization of directly displayed buffered variables x

17 Allocation of memory area and initial value for sym-
bolic variables

x

18 Allocation of memory area and initialization for field x

19 Use of directly displayed variables x

20 VAR_GLOBAL .. END_VAR
Declaration with a PROGRAM x

21 VAR_ACCESS .. END_VAR
Declaration with a PROGRAM x

Standard fulfilment13–14

1070 072 305-104 (03.03) GB

13.2 Language elements

Operators of instructions list, IL (table 52)

No. Operator Modifier Yes No

1 LD N x

2 .ST N x

3 S
R

x
x

4 AND N,(x

5 & N,(x

6 OR N,(x

7 XOR N,(x

8 ADD (x

9 SUB (x

10 MUL (x

11 DIV (x

12 GT (x

13 GE (x

14 EQ (x

15 NE (x

16 LE (x

17 LT (x

18 JMP C, N x

19 CAL C, N x

20 RET C, N x

21) x

Characteristics of function block call in the language IL
(Table 53)

No. Explanation Yes No

1 CAL with list of input parameters x

2 CAL with loading/ saving of input parameters x

3 Use of input operators x

Standard fulfilment 13–15

1070 072 305-104 (03.03) GB

Operators of language ST (table 55)

No. Explanation Yes No

1 Bracketing x

2 Function evaluation x

3 Exponentiation x

4 Negation x

5 Complement x

6 Multiplication x

7 Division x

8 Modulo x

9 Addition x

10 Subtraction x

11 Comparison x

12 Equality x

13 Inequalility x

14 Boolean AND x

15 Boolean AND x

16 Boolean exclusive OR x

17 Boolean OR x

Statements of language ST (table 56)

No. Explanation Yes No

2 Function block call and use of FB output x

3 RETURN x

4 IF x

5 CASE x

6 FOR x

7 WHILE x

8 REPEAT x

9 EXIT x

10 Empty statement x

1 RETAIN for internal variables x

Standard fulfilment13–16

1070 072 305-104 (03.03) GB

13.3 Causes of errors

Causes of errors (table E.1)

Causes of errors System reaction

Value of a variable differentiates the identified range –

Length of the initialization list does not match the
number of array entries

Syntax error

Type conversion error Syntax error

Numeric result exceeds the range for data types

Division by zero

–

–

Mixed input data types in case of a selection func-
tion

Selector outside the range

Syntax error

–

Invalid character position –

Result exceeds range for data type –

Zero or more as a starting step in SFC network –

Simultaneously fulfilled non-prioritized transitions –

Side effects in the evaluation of a transition condi-
tion

–

Action control error –

Unsafe or unachievable sequence –

Data type conflict in VAR_ACCESS –

Task requires too many processor resources; execu-
tion end not reached; Other task time plan conflicts

–

Numeric result exceeds the range for data type –

Division by zero; Invalid data type for operand –

Reverse jump from the function without assigned
value

–

Infinite loop Cycle time error

Same identifier as connector and element name –

Non–initialized reverse link variable –

Numeric result exceeds the range for data types

Division by zero

–

Annex A–1

1070 072 305-104 (03.03) GB

A Annex

A.1 Abbreviations

Abbreviation Description

DM Data Module

ESD Electro Static Discharge
Abbreviation for all terms relating to elec-
tro-static discharge, e.g. ESD protection,
ESD hazards, etc.

FB FUNCTION_BLOCK acc. to IEC 61131-3

FBD Function Block Diagram

FC Function Call of the classical program lan-
guages

FUN FUNCTION acc. to IEC 61131-3

IEC International Electrotechnical Commission

IL Instruction List

LD Ladder Diagram

OM Organisation Module

PCL Bosch Software PLC. The name is com-
posed from PC (Personal Computer) and
CL (Control Logic).

PLC Programmable Logic Controller

POU Program Organisation Unit

PROG PROGRAM, main program acc. to
IEC61131-3

SFC Sequential Function Chart

ST Structured Text

WinSPS Bosch software for programming PLCs

AnnexA–2

1070 072 305-104 (03.03) GB

A.2 Index

A
Access paths, 6–10
Accumulator, 8–2
Actual parameter, 11–6
Actual Result, 8–2
Addition, 8–15
Address, 5–5
AND, 8–12
ANDN, 8–12
ANY, 7–13
Arithmetic functions, 12–5
Arithmetic operators, 8–15
ARRAY, 7–22
Array, 7–22
ASCII constants, 7–5
ASCII string, 7–10
Assignment, 8–10, 9–4
AT, 7–19
Attributes, 5–6, 7–30

B
Base byte address, 11–15
Base Level Certificate, 3–8
Base–specific number, 7–5
Binary links, 12–8
Binary numbers, 7–4
Binary operations, 8–12
Bistable elements, 8–11, 12–14
Bit sequence , 7–10
Body, 6–12
BOOL, 7–10
Boolean data, 7–4
Boolean functions, 12–8
Boolean operators, 8–12
Bosch IL, 3–2, 11–4
BYTE, 7–10

C
CAL, 8–21
CALC, 8–21
CALCN, 8–21
Calendar date, 7–6, 7–10
Call interface, 6–14
Call parameter list, 11–5
call–by–reference, 6–15
call–by–value, 6–15
Carry, 8–2
CASE, 9–7
Causes of errors, 13–16
Certificate, 3–8
Check, 10–1
Check module, 10–1
Checklists, 13–1
Classical programming language, 3–2, 11–1
Cleaning up, 11–9
Cold reset, 7–17
Comment, 7–8
Common elements, 3–5, 5–2, 13–1

Comparison, 12–9
Comparison operators, 8–18
Compile module, 10–1
Compliance Tables, 13–1
Conditional execution, 8–18, 9–5
Conditional FB call, 8–21
Conditional jump, 8–20
Conditional return jump, 8–24
Configuration, 3–7
Conformity tables, 13–1
CONSTANT, 7–30
Constant definition, 5–18, 7–31
Counter, 12–16
Counting loop , 9–8
CR, 8–2
Create new project, 10–2
CTD, 12–16
CTU, 12–16
CTUD, 12–17
Current Result, 8–2

D
Data buffer, 11–12
Data field, 11–12
Data model, 7–1
Data module, 4–4, 10–4
Data structure, 7–28
Data Type, 5–5, 5–9, 7–9
Data type conversion, 12–3
Data width, 7–19
DATE, 7–10
Date, 7–6
DATE_AND_TIME, 7–10
Declaration, 7–15
Declaration part, 6–8
Declaration tables, 5–3
Default settings, 4–1
Default value, 7–9
DEFINE Editor, 5–18
Delimiter, 7–7
Derived data types, 7–11
DINT, 7–10
Directly shown address, 7–19
Division, 8–17
DM, 10–4, 11–6
Documentation, 1–6
Downward counter , 12–16
DWORD, 7–10

E
Edge detection, 12–15
Elementary data types, 7–9
ELSE, 9–6, 9–7
ELSEIF, 9–6
Emergency–STOP–devices, 1–5
End Of Line, 7–7
End section, 10–4
Entire program, 10–2

Annex A–3

1070 072 305-104 (03.03) GB

ENUM, 5–16, 7–12
Enumeration, 7–12
Error messages, 5–12
Exclusive OR:, 8–14
EXIT, 9–12
Exponential numbers, 7–5
Extensibility , 12–3
External variable, 6–10

F
F_EDGE, 7–30
F_TRIG, 12–15
Falling edge, 12–15
FALSE, 7–10
FB, refer to: Function block, 6–5
FBD, 3–1
FC, 10–4
Figure with a sign, 7–10
Figure without a sign, 7–10
Firmware version, 3–8
Flipflop, 8–11, 12–14
Floating point numbers, 7–4, 7–10
Floppy disk drive, 1–6
FOR, 9–8
Formal parameter, 6–14
FUN, refer to: Function, 6–7
FUN ReturnType, 5–4
FUNCTION, 6–7
Function, 6–7

Call, 6–19, 8–22
Extensibility , 12–3
Overloaded, 12–1
Standard functions, 12–1

Function block, 6–5
Call, 6–17, 8–20, 11–5
Changing the call, 11–8
Deleting the call, 11–9
Instance, 6–21
Memory, 6–22
Standard function block, 12–12
Validity, 6–22

Function Block Diagram, 3–1
Function value, 6–14
FUNCTION_BLOCK, 6–5

G
Gate, 8–12
Generate project, 10–2
Generic data types, 7–13, 12–1
Global type definition, 5–14, 11–14
Global variable, 6–10
GRAFCET, 3–3

H
Hard disk drive, 1–6
Hexadecimal numbers, 7–4
Hot Restart, 7–17

I
Identifiers, 7–3, 11–17
IEC 61131–3, 3–1

IEC file, 4–4
IEC IL, 3–2
IEC_FUNCTION_BLOCK, 11–9
IF, 9–6
IL, 3–1, 8–1

Current Result, 8–2
Instruction set, 8–7
Instructions, 8–1
Label, 8–5
Nesting, 8–5
Sequence, 8–4

IM, 10–4
Initial value, 5–5, 5–10, 6–15, 7–11, 7–16
Initializing the PCL, 7–9, 7–16
Input and output variable, 6–10
Input parameter, 6–14
Input variable, 6–9
Inputs, 7–19
Installation, 4–1
Instance, 6–21, 6–22, 10–6, 11–4
Instruction list, refer to: IL, 8–1
Instruction set, 8–7
Instructions

IL, 8–1
ST, 9–3

Instructions part, 5–11, 6–12
INT, 7–10
Interrupt, 8–2
Iterations, 9–5

J
JMP, 8–19
JMPC, 8–20
JMPCN, 8–20
Jump statements, 8–19, 9–3

K
Key words, 7–2

L
Label, 8–1, 8–5
Ladder Diagram, 3–1
Language elements, 7–1, 13–14
LD, 3–1, 8–9
LDN, 8–9
Library, 6–6, 6–8
License, 4–1
Link, 8–12
Link modules, 10–2
Linker, 10–2
Links, 12–8
LINT, 7–9
Literals, 7–4
Load instructions, 8–9
Load modules, 10–5
Load program, 10–5
Local variable, 6–9
Logical links, 12–8
Logical operations, 8–12
Logical value, 7–10
LREAL, 7–10

AnnexA–4

1070 072 305-104 (03.03) GB

LWORD, 7–9

M
Main program, 6–4, 10–2
Marker, 7–19
Mathematical operators, 8–15
Memory, 6–22
Memory address, 11–15
Mixed programs, 11–2
Module Calls, 6–12
Modules, 6–1
Monitor, 10–6
Monitor data, 5–7
Multi–selection, 9–7
Multielement variables, 7–22
Multiplication, 8–16
Multitasking, 6–4

N
Names, 7–2
Negation, 8–2
Nesting levels, 8–5
Number base, 7–5
Numbers, 7–4
Numeric functions, 12–5
Numeric literals, 7–4

O
Octal numbers, 7–4
Off–delay, 12–19
OM1, 11–2
On–delay, 12–19
Operand, 8–2
Operator, 8–2
Operators

Arithmetic, 8–15
Assignment, 8–10
Boolean, 8–12
Call of FBs, 8–20
Comparison, 8–18
IL (Programming language), 8–7
Jump, 8–19
Load instructions, 8–9
Return jump, 8–23
ST (Programming language), 9–1

OR, 8–13
Order of precedence, 9–1
Organisation module, 11–2
ORN, 8–13
Output parameter, 6–14
Output variable, 6–9
Outputs, 7–19
Overflow, 8–2
Overloaded function, 7–14, 12–1

P
Parameter, 6–14
Parethesis, 8–5
Physical addresses, 5–5, 7–19, 11–11, 11–17
PLC addresses, 7–19
PM, 11–6

Pointer, 6–15, 11–16
Post–loading, 10–5
POU, 6–1

Call parameter, 6–14
Calls, 6–12

POU name, 5–3
POU type, 5–3, 6–3
Power failure, 7–17
Priority, 9–1
PROG, 6–4
PROGRAM, 6–4
Program file, 4–3, 10–4
Program module, 4–3, 11–2
Program Organization Units, refer to: POU, 6–1
Programming languages, 3–1
Project specifications, 10–4
Pulse, 12–18

Q
Qualified personnel, 1–2
Quotation marks, 7–5

R
R, 8–11
R_EDGE, 7–30
R_TRIG, 12–15
RANGE, 7–12
Range, 7–12
READ_ONLY, 7–30
READ_WRITE, 7–30
REAL, 7–10
Real time clock, 12–20
Recursion, 6–13
Register, 8–2
Release, 1–6
Remanence characteristic, 7–17
REPEAT, 9–10
Reset dominant, 12–14
Resetting command, 12–14
Resetting instruction, 8–11
Resource, 3–7
Restart, 7–17
Result of logic operations, 8–2
RET, 8–23
RETAIN, 7–17, 7–30
RETC, 8–24
RETCN, 8–24
RETURN, 9–5
Return jump, 8–23, 9–5
Return value, 6–14
return–by–value, 6–15
Rising edge, 12–15
RLO, 8–2
Rotate, 12–7
RS, 12–14
RTC, 12–20

S
S, 8–10
Safety instructions, 1–4
Safety markings, 1–3

Annex A–5

1070 072 305-104 (03.03) GB

Selection, 9–5, 9–6, 12–8
Sequential Function Chart, 3–1, 11–10
Set dominant, 12–14
Set instruction, 8–10
Setting command, 12–14
SFC, 3–1
Shift, 12–7
Sign, 7–5
Single element variable, 7–22
SINT, 7–10
Software version, 3–8
Space, 7–7
Special characters, 7–5, 7–7
Special marker, 11–12
SR, 12–14
ST, 8–10, 9–1

Assignment, 9–4
Expressions, 9–1
Function block call, 9–4
Function call, 9–2
Instructions, 9–3
Loop end, 9–12
Loops, 9–8
Operands, 9–1
Operators, 9–1
Priority, 9–1
Return jump, 9–5
Selection, 9–6, 9–7

Standard fulfillment, 13–1
Standard function block, 12–12

Bistable elements, 12–14
Counter, 12–16
Edge detection, 12–15
Timer, 12–18

Standard functions, 12–1
Arithmetic, 12–5
Shift, 12–7
Boolean, 12–8
Comparison, 12–9
Numeric, 12–5
Selection, 12–8
Strings, 12–10
Type conversion, 12–3

Standard operation, 1–1
Standard value, 7–9
Start section, 10–4
Status bit, 8–2
Step action, 11–10
STN, 8–10
STRING, 7–10
String literal, 7–5
String terminator, 7–5
String variables, 7–21
Strings, 11–17, 12–10
STRUCT, 5–15, 7–28
Structure, 7–28
Structured Text, refer to: ST, 9–1
Subtraction, 8–16
Symbol file, 4–3, 10–4, 11–11
Symbolic operands, 11–13

T
Task, 3–7
Terminator, 7–5
Text constants, 7–12
THEN, 9–6
TIME, 7–10
Time, 7–6, 7–10
Time duration, 7–6, 7–10
Time literals, 7–6
Time of day, 7–6
TIME_OF_DAY, 7–10
Timer, 12–18
TOF, 12–19
TON, 12–19
TP, 12–18
Trademarks, 1–6
Translate module, 10–1
TRUE, 7–10
TYPE, 5–14, 7–11
Type conversion, 12–3
Type definition, 5–8, 7–11
Type editor, 5–14
Type name, 5–8

U
UDINT, 7–10
UINT, 7–10
ULINT, 7–9
Umlauts, 7–1, 7–6
Unconditional FB call, 8–21
Unconditional jump, 8–19
Unconditional return jump, 8–23
Understroke, 7–3, 7–5, 7–6
UNTIL, 9–10
Upward and downward counter, 12–17
Upward counter, 12–16
USINT, 7–10

V
Validity, 6–22
VAR, 6–9
VAR_ACCESS, 6–10
VAR_EXTERNAL, 6–10
VAR_GLOBAL, 6–10
VAR_IN_OUT, 6–10
VAR_INPUT, 6–9
VAR_OUTPUT, 6–9
Variable, 7–15

Access, 7–18
ARRAY, 7–22
Attributes, 7–30
Data structure (STRUCT), 7–28
Initialization, 7–16
Physical address, 7–19
String, 7–21

Variable attributes, 7–30
Variable declaration, 5–4
Variable type, 5–4, 6–9, 6–15

W
Warm start, 7–17

AnnexA–6

1070 072 305-104 (03.03) GB

WHILE, 9–10
WORD, 7–10
Working register, 8–2

X
XOR, 8–14

Z
Zero, 8–2

A–1

1070 072 305-104 (03.03) GB

1070 072 305-104 (03.03) GB · HB SP · BRC/EPY · Printed in Germany

Bosch Rexroth AG
Electric Drives and Controls
Postfach 11 62
64701 Erbach
Berliner Straße 25
64711 Erbach
Deutschland
Tel.: +49 (0) 60 62/78-0
Fax: +49 (0) 60 62/78-4 28
www.boschrexroth.com

Australia

Bosch Rexroth Pty. Ltd.
3 Valediction Road
Kings Park NSW 2148
Phone:+61 (0) 2 98 31 77 88
Fax: +61 (0) 2 98 31 55 53

United Kingdom

Bosch Rexroth Ltd.
Broadway Lane, South Cerney
Cirencester GL7 5UH
Phone:+44 (0) 1285-86 30 00
Fax: +44 (0) 1285-86 30 03

USA

Bosch Rexroth Corporation
5150 Prairie Stone Parkway
Hoffmann Estates, Illinois 60192
Phone:+1 (0) 847 6 45-36 00
Fax: +1 (0) 847 6 45-08 04

Canada

Bosch Rexroth Canada Corp.
490 Prince Charles Drive South
Welland, Ontario L3B 5X7
Phone:+1 (0) 905 7 35-05 10
Fax: +1 (0) 905 7 35-56 46

	1 Safety Instructions
	1.1 Intended use
	1.2 Qualified personnel
	1.3 Safety markings on components
	1.4 Safety instructions in this manual
	1.5 Safety instructions for the described product
	1.6 Documentation, software release and trademarks

	2 Quick start and input examples
	2.1 Project Default settings
	2.2 Programming variations
	2.3 Edit IEC file
	2.4 Check symbol file
	2.5 Load program in the controller
	2.6 Observe and test the program on the monitor

	3 Introduction
	3.1 What is IEC 61131-3?
	3.2 Programming languages of the IEC 61131-3
	3.2.1 The programming language IL
	3.2.2 The programming language ST

	3.3 Why use programming languages as per IEC 61131-3 ?
	3.4 Difference from "classical" programming languages
	3.5 Model of the programming as per IEC 61131-3
	3.6 Compatibility and fulfillment of standard
	3.7 Programming system and controller

	4 Project preparations
	4.1 Installation
	4.2 Default settings
	4.2.1 Licensing the programming languages
	4.2.2 Project default settings

	5 Writing programs in the WinSPS Editor
	5.1 Declaration tables
	5.1.1 POU type
	5.1.2 Variable declaration
	5.1.3 Type definition

	5.2 Instructions part
	5.3 Error messages
	5.4 Global variable declaration - variable editor
	5.5 Global type definition - type editor
	5.5.1 TYPE: Data Type
	5.5.2 STRUCT: Data structure
	5.5.3 ENUM: Enumeration

	5.6 Constant definition - DEFINE Editor

	6 Program Structure
	6.1 Program Organization Units- modules of the IEC
	6.2 POU types
	6.2.1 Main program - PROGRAM
	6.2.2 Function block - FUNCTION_BLOCK
	6.2.3 Function - FUNCTION

	6.3 Declaration part
	6.3.1 Variable types
	6.3.2 Applicability and access options of the variable types

	6.4 Instructions part
	6.5 Calls between POUs
	6.5.1 Call hierarchy
	6.5.2 Recursive calls
	6.5.3 Call interface - parameters during the call
	6.5.4 Calling up the function blocks
	6.5.5 Calling up the functions

	6.6 Instance building of function blocks
	6.6.1 Validity of function blocks
	6.6.2 Module with "memory"
	6.6.3 Instance building for combination with "classical" programming languages

	7 Data model
	7.1 Language elements
	7.1.1 Key words
	7.1.2 Identifiers
	7.1.3 Literals
	7.1.4 Delimiter
	7.1.5 Comments

	7.2 Data types
	7.2.1 Elementary data types
	7.2.2 Derived data types (Type definition)
	7.2.3 Generic data types

	7.3 Variables
	7.3.1 Declaration of variables
	7.3.2 Initialization of variables and remanence
	7.3.3 Access to variables
	7.3.4 Physical addresses
	7.3.5 String variables
	7.3.6 ARRAY
	7.3.7 Data structures (STRUCT)
	7.3.8 Variable attributes

	8 Programming language Instruction List (IL)
	8.1 Instructions
	8.2 Working register and status bits
	8.3 Current Result (CR) - the universal accumulator
	8.4 Program rules
	8.4.1 IL sequences
	8.4.2 Label
	8.4.3 Nesting levels, Parenthesis

	8.5 Instruction set
	8.5.1 Load instructions - LD
	8.5.2 Assignments - ST, S, R
	8.5.3 Boolean operators AND, &, OR, XOR
	8.5.4 Arithmetic operators ADD, SUB, MUL, DIV
	8.5.5 Comparison operators- GT, GE, EQ, LE, LT, NE
	8.5.6 Jump operators - JMP, JMPC, JMPCN
	8.5.7 Call of function blocks - CAL, CALC, CALCN
	8.5.8 Call of functions
	8.5.9 Return jump - RET, RETC, RETCN

	9 Programming language Structured Text (ST)
	9.1 Expressions, operands and operators
	9.2 Instructions
	9.2.1 Assignment
	9.2.2 Call of an function block
	9.2.3 Return jump - RETURN
	9.2.4 Conditional execution
	9.2.5 Selection, - IF
	9.2.6 Multi-selection- CASE
	9.2.7 FOR loop
	9.2.8 WHILE loop
	9.2.9 REPEAT loop
	9.2.10 Deflecting and non-deflecting loops
	9.2.11 Premature loop end - EXIT

	10 Check load and test program
	10.1 Check / compile module
	10.2 Link all modules - Create new project
	10.3 Project specifications in the symbol file
	10.4 Load program and modules
	10.5 Monitor

	11 Use of IEC modules in the classical programming languages
	11.1 Pure IEC programs
	11.2 Mixed programs
	11.3 Function block call
	11.3.1 Call parameter list - wizard for FB call
	11.3.2 Changing the FB calls
	11.3.3 Deleting the FB calls
	11.3.4 Call in the Sequential Function Chart

	11.4 Symbol file - interface of mixed programming
	11.4.1 Physical addresses and miscellaneous data
	11.4.2 Symbolic operands via the call interface
	11.4.3 Symbolic operands as global variables
	11.4.4 Global type definitions

	11.5 Differences in case of mixed programming

	12 Standardized functionality
	12.1 Standard functions
	12.1.1 Generic data types and "overloaded" functions
	12.1.2 Extensibility of functions
	12.1.3 Type conversion
	12.1.4 Numeric functions
	12.1.5 Arithmetic functions
	12.1.6 Shift functions
	12.1.7 Boolean functions - logical links
	12.1.8 Selection
	12.1.9 Comparison
	12.1.10 Functions for strings

	12.2 Standard function block
	12.2.1 Bistable elements - Flipflops
	12.2.2 Edge detection
	12.2.3 Counter
	12.2.4 Timer

	13 Standard fulfilment
	13.1 Common elements
	13.2 Language elements
	13.3 Causes of errors

	A Annex
	A.1 Abbreviations
	A.2 Index

